Modern Continuous Delivery

“ deploy to production
from commit #1

Peter Bittnher

Developer
of people, companies and code

@peterbittner, django@bittner.it

painless/tox PythonTurtle ansible-role-software
behave-django codeship-yam| djangocms-maps django-probes
django-bootstrap-static django-apptemplates django-organice pyclean

https://vshn.ch/
https://painless.software/
https://github.com/behave/behave-django
https://github.com/bittner/pyclean
https://github.com/Organice/djangocms-maps
https://github.com/painless-software/ansible-role-software
https://github.com/vshn/django-probes
https://github.com/bittner/django-apptemplates
https://github.com/painless-software/codeship-yaml
https://github.com/organice/django-organice
https://github.com/cool-RR/PythonTurtle
https://github.com/painless-software/docker-tox
https://github.com/bittner/django-bootstrap-static

Continuous Delivery

/11 q set of practices and principles in software engineering
aimed at building, testing, and releasing software
sdafely, faster, more frequently, and in a sustainable way.

Source:

https://painless.software/continuous-delivery

Continuous Delivery

/11 q set of practices and principles in software engineering
aimed at building, testing, and releasing software
sdafely, faster, more frequently, and in a sustainable way.

/1 the goal is to put the release schedule
in the hands of the business, not in the hands of IT.

Source:

https://painless.software/continuous-delivery

Continuous Delivery

/11 q set of practices and principles in software engineering
aimed at building, testing, and releasing software
sdafely, faster, more frequently, and in a sustainable way.

/1 the goal is to put the release schedule
in the hands of the business, not in the hands of IT.

Source: painless.software/continuous-delivery

https://painless.software/continuous-delivery
https://painless.software/continuous-integration

ﬂ?’ % O /)
6, %
Jz,)) “% o,
®,)(‘ Ay

25

Continuous Delivery

/11 q set of practices and principles in software engineering
aimed at building, testing, and releasing software
sdafely, faster, more frequently, and in a sustainable way.

/1 the goal is to put the release schedule
in the hands of the business, not in the hands of IT.

Source: painless.software/continuous-delivery

https://painless.software/continuous-delivery
https://painless.software/continuous-integration
https://painless.software/continuous-deployment

]
[im &
I [b

= = e

Modern?

[
(0 [Y

| i

o

Modern?

Immutable infrastructure

[
i

o

Modern?

Immutable infrastructure

Container orchestration

I
[
I %

o

Modern?

Immutable infrastructure

Container orchestration

Version control + automation gt

I
[
I %

o

Modern?

Immutable infrastructure

Container orchestration

Version control + automation gt

Cloud-native applications

il
M CODESHIP
(1) T A —d by CloudBees
B

Choice or Lock-in?

SWISS CONTAINER PLATFORM

There must be a better way!

1. Clean code

2. Deploy to production
from commit #1

https://cleancoders.com/video-details/clean-code-episode-45

0e:22 %
v ~/Development/scratch/europython-demo [master L|~]
06:22 4 tree

— application

== Demo
— settings.py

— urls.py

|

|
——=—wsgrpy

IL— deployment

| |— application

| | — Dockerfile

| | }— entrypoint.sh

| | L— uwsgi.ini

| — application-secrets.yaml
| — application.yaml

| — envs

| | — development

| | — integration

| | L— production

| — postgres-secrets.yaml
| — postgres. yaml

| — README. rst

| L— webserver

| L— nginx.conf

— docker-compose. yml

— LICENSE

— manage.py

— README.rst

— requirements

| | base.in

| — development.in

| | production.in

| L production.txt

— regquirements. txt

|— tests

| — acceptance

| | — environment.py

| | — features

| | | L— login-logout.feature
| | L— steps

| — fixtures.py
[

|

I |

|
|

— given.py °

— then.py

APPUIO
— README. rst

L— unit SWISS CONTAINER PLATFORM

L— test application.py
L— tox.ini

11 directories, 34 files
« ~/Development/scratch/europython-demo [master L|«]
00:22 $ ||

https://asciinema.org/a/256954
https://github.com/painless-software/painless-continuous-delivery
https://appuio.ch/

Responsibility Layers

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility Layers

Application

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility Layers

Application

Development

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility Layers

Application
Development

Deployment

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility Layers

Application
Development
Deployment

Automation

https://twitter.com/jaredpalmer/status/1142800704580591617

Application

One environment!
12-factor app.

Build with features.

Compose in environments.

~[Development/scratch/europython-demo [
01:04 S tree

application

L tun 1 Eeny
— settings.py
— urls.py

— wsgi.py
LICENSE
manage.py
README.rst
requirements. txt

1 directory, 8 files
~[Development/scratch/europython-demo [
01:04 $ |}

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/application/settings.py

Development

Make it easy!
Standard practices.

No comprehensive instructions.

Simple & user-friendly!

~/Development/scratch/europython-demo [
01:14 $ tree

— application
— docker-compose.yml
— manage.py
— requirements. txt
— tests
acceptance
— environment.py
— features
L— login-logout.feature
— steps
— fixtures.py
— given.py
then.py
— when.py
—— README.rst
— unit
L — test_application.py
=—— tox.ini

6 directories, 12 files
~/Development/scratch/europython-demo [
01:14 $

https://gitlab.com/appuio/europython-demo/blob/master/README.rst

Deployment

Make it beautiful!
Easy to explain.

Generate + seal your secrets,

or seal + commit your secrets.

~[Development/scratch/europython-demo [
01:41 § tree

— application
— deployment
— application
— Dockerfile
— entrypoint.sh
— uwsgi.ini
— application-secrets.yaml
— application.yaml
— envs
— development
— integration
— production
— postgres-secrets.yaml
— postgres.yaml
— webserver
L— nginx.conf

5 directories, 11 files
/ ~/Development/scratch/europython-demo [
01:41 $

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/deployment/application.yaml

Au to m a tl 0 n ~[Development/scratch/europython-demo [

01:50 $§ tree -a

: i — deployment

Keep I S|mple! L— application
L— pockerfile

— .dockerignore

— .gitlab-ci.yml

— tests

— acceptance

— unit

Tell a story! — tox.1int

What you would do manually.

ASAP 5 directories, 4 files
~[Development/scratch/europython-demo [
01:50 $ |}

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/.gitlab-ci.yml

ASAP!

as simple as possible

Deploy to production!

often + from commit #1

lterate!
... ahd improve

Agile, please.
test-driven, pair-programming

Free your software
no secrets, no security holes

“ The only way to go fast
Is to go well.

--- Robert C. Martin

Source: Technology and Friends, Episode 354, 2015

https://channel9.msdn.com/Blogs/Technology-and-Friends/tf354

Thank you!

for your precious time

Painless Software

Less pain, more fun.

https://painless.software/
https://github.com/painless-software/painless-continuous-delivery/
https://gitlab.com/painless-software/painless-continuous-delivery
https://bitbucket.org/painless-software/painless-continuous-delivery
https://github.com/painless-software/painless-continuous-delivery

Pythonistas Oath

Beautiful i1s better than ugly.
Explicit 1s better than implicit.
Simple 1s better than complex.
Complex 1s better than complicated.
Flat 1s better than nested.

Sparse 1s better than dense.
Readability counts.

Special cases aren't special enough
to break the rules.

Al theough ™ piscicivifel-Nhhm /Ao c clsc DL 1 Ty .

Pythonistas Oath

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse

the temptation to guess.

There should be one-- only one —--obvious way
to do 1t.

Although that way may not be obvious

e Balie SiE B OL0IAT

Pythonistas Oath

Now 1s better than never.

Although never 1s often better

than *right* now.

If the implementation 1s hard to explain,
1it's a bad idea.

If the implementation 1s easy to explain,
1t may be a good 1dea.

Pythonistas Oath

Continuous delilivery 1s
a honking great 1dea.

1 £ you depilicinsciyshgvEhbich=hlon
from comm:EE.

Let's do it EEEESPchaa o da Yy .

Python

