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Choice or Lock-in?Choice or Lock-in?



1. Clean code1. Clean code

2. Deploy to production2. Deploy to production  
from commit #1from commit #1

There must be a better way!There must be a better way!

https://cleancoders.com/video-details/clean-code-episode-45


DemoDemo

https://asciinema.org/a/256954
https://github.com/painless-software/painless-continuous-delivery
https://appuio.ch/
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ApplicationApplication

One environment!
12-factor app.

Build with features.
Compose in environments.

11

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/application/settings.py


DevelopmentDevelopment

Make it easy!
Standard practices.

No comprehensive instructions.
Simple & user-friendly!
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https://gitlab.com/appuio/europython-demo/blob/master/README.rst


DeploymentDeployment

Make it beautiful!
Easy to explain.

Generate + seal your secrets,
or seal + commit your secrets.
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https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/deployment/application.yaml


AutomationAutomation

Keep it simple!
What you would do manually.

Tell a story!
ASAP

44

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/.gitlab-ci.yml


ASAP!ASAP!
as simple as possibleas simple as possible



Deploy to production!Deploy to production!
often + from commit #1often + from commit #1



Iterate!Iterate!
... and improve... and improve



Agile, please.Agile, please.
test-driven, pair-programmingtest-driven, pair-programming



Free your softwareFree your software
no secrets, no security holesno secrets, no security holes



“  The only way to go fastThe only way to go fast  
is to go well.is to go well.

--- Robert C. Martin

Source: , 2015Technology and Friends, Episode 354

https://channel9.msdn.com/Blogs/Technology-and-Friends/tf354


Thank you!Thank you!
for your precious timefor your precious time

Painless SoftwarePainless Software
Less pain, more fun.

https://painless.software/
https://github.com/painless-software/painless-continuous-delivery/
https://gitlab.com/painless-software/painless-continuous-delivery
https://bitbucket.org/painless-software/painless-continuous-delivery
https://github.com/painless-software/painless-continuous-delivery


Beautiful is better than ugly. 
Explicit is better than implicit. 
Simple is better than complex. 
Complex is better than complicated. 
Flat is better than nested. 
Sparse is better than dense. 
Readability counts. 
Special cases aren't special enough 
to break the rules. 
Although practicality beats purity. 

Pythonistas OathPythonistas Oath
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Errors should never pass silently. 
Unless explicitly silenced. 
In the face of ambiguity, refuse 
the temptation to guess. 
There should be one only one obvious way 
to do it. 
Although that way may not be obvious 
at first sight.

Pythonistas OathPythonistas Oath
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Now is better than never. 
Although never is often better 
than *right* now. 
If the implementation is hard to explain, 
it's a bad idea. 
If the implementation is easy to explain, 
it may be a good idea.

Pythonistas OathPythonistas Oath
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Continuous delivery is 
a honking great idea. 
If you deploy to production 
from commit #1. 
 
Let's do it!  I start today.

Pythonistas OathPythonistas Oath

44

Python


