
Modern Continuous DeliveryModern Continuous Delivery

“ deploy to productiondeploy to production
from commit #1from commit #1

Peter BittnerPeter Bittner
DeveloperDeveloper

of people, companies and codeof people, companies and code

@peterbittner, django@bittner.it

behave-django
pyclean

djangocms-maps
ansible-role-software

django-probes
django-apptemplates

codeship-yaml
django-organice

PythonTurtlepainless/tox

django-bootstrap-static

https://vshn.ch/
https://painless.software/
https://github.com/behave/behave-django
https://github.com/bittner/pyclean
https://github.com/Organice/djangocms-maps
https://github.com/painless-software/ansible-role-software
https://github.com/vshn/django-probes
https://github.com/bittner/django-apptemplates
https://github.com/painless-software/codeship-yaml
https://github.com/organice/django-organice
https://github.com/cool-RR/PythonTurtle
https://github.com/painless-software/docker-tox
https://github.com/bittner/django-bootstrap-static

Continuous DeliveryContinuous Delivery
“ a set of practices and principles in software engineering

aimed at building, testing, and releasing software
safely, faster, more frequently, and in a sustainable way.

Source: painless.software/continuous-delivery

https://painless.software/continuous-delivery

Continuous DeliveryContinuous Delivery
“ a set of practices and principles in software engineering

aimed at building, testing, and releasing software
safely, faster, more frequently, and in a sustainable way.

“ the goal is to put the release schedule
in the hands of the business, not in the hands of IT.

Source: painless.software/continuous-delivery

https://painless.software/continuous-delivery

Continuous DeliveryContinuous Delivery
“ a set of practices and principles in software engineering

aimed at building, testing, and releasing software
safely, faster, more frequently, and in a sustainable way.

“ the goal is to put the release schedule
in the hands of the business, not in the hands of IT.

Source: painless.software/continuous-delivery

 ?? ??

Contin
uous

Contin
uous

in
te

gra
tio

n

in
te

gra
tio

n

https://painless.software/continuous-delivery
https://painless.software/continuous-integration

Continuous DeliveryContinuous Delivery
“ a set of practices and principles in software engineering

aimed at building, testing, and releasing software
safely, faster, more frequently, and in a sustainable way.

“ the goal is to put the release schedule
in the hands of the business, not in the hands of IT.

Source: painless.software/continuous-delivery

 ?? ??

Contin
uous

Contin
uous

in
te

gra
tio

n

in
te

gra
tio

n

 ?? ??

Continuous

Continuous

deploym
ent

deploym
ent

https://painless.software/continuous-delivery
https://painless.software/continuous-integration
https://painless.software/continuous-deployment

Modern?Modern?

Modern?Modern?
Immutable infrastructureImmutable infrastructure

Modern?Modern?
Immutable infrastructureImmutable infrastructure

Container orchestrationContainer orchestration

Modern?Modern?
Immutable infrastructureImmutable infrastructure

Container orchestrationContainer orchestration

Version control + automationVersion control + automation

Modern?Modern?
Immutable infrastructureImmutable infrastructure

Container orchestrationContainer orchestration

Version control + automationVersion control + automation

Cloud-native applicationsCloud-native applications

Choice or Lock-in?Choice or Lock-in?

1. Clean code1. Clean code

2. Deploy to production2. Deploy to production
from commit #1from commit #1

There must be a better way!There must be a better way!

https://cleancoders.com/video-details/clean-code-episode-45

DemoDemo

https://asciinema.org/a/256954
https://github.com/painless-software/painless-continuous-delivery
https://appuio.ch/

Responsibility LayersResponsibility Layers

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility LayersResponsibility Layers

ApplicationApplication

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility LayersResponsibility Layers

ApplicationApplication

DevelopmentDevelopment

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility LayersResponsibility Layers

ApplicationApplication

DevelopmentDevelopment

DeploymentDeployment

https://twitter.com/jaredpalmer/status/1142800704580591617

Responsibility LayersResponsibility Layers

ApplicationApplication

DevelopmentDevelopment

DeploymentDeployment

AutomationAutomation

https://twitter.com/jaredpalmer/status/1142800704580591617

ApplicationApplication

One environment!
12-factor app.

Build with features.
Compose in environments.

11

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/application/settings.py

DevelopmentDevelopment

Make it easy!
Standard practices.

No comprehensive instructions.
Simple & user-friendly!

33

https://gitlab.com/appuio/europython-demo/blob/master/README.rst

DeploymentDeployment

Make it beautiful!
Easy to explain.

Generate + seal your secrets,
or seal + commit your secrets.

22

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/deployment/application.yaml

AutomationAutomation

Keep it simple!
What you would do manually.

Tell a story!
ASAP

44

https://gitlab.com/-/ide/project/appuio/europython-demo/blob/master/-/.gitlab-ci.yml

ASAP!ASAP!
as simple as possibleas simple as possible

Deploy to production!Deploy to production!
often + from commit #1often + from commit #1

Iterate!Iterate!
... and improve... and improve

Agile, please.Agile, please.
test-driven, pair-programmingtest-driven, pair-programming

Free your softwareFree your software
no secrets, no security holesno secrets, no security holes

“ The only way to go fastThe only way to go fast
is to go well.is to go well.

--- Robert C. Martin

Source: , 2015Technology and Friends, Episode 354

https://channel9.msdn.com/Blogs/Technology-and-Friends/tf354

Thank you!Thank you!
for your precious timefor your precious time

Painless SoftwarePainless Software
Less pain, more fun.

https://painless.software/
https://github.com/painless-software/painless-continuous-delivery/
https://gitlab.com/painless-software/painless-continuous-delivery
https://bitbucket.org/painless-software/painless-continuous-delivery
https://github.com/painless-software/painless-continuous-delivery

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough
to break the rules.
Although practicality beats purity.

Pythonistas OathPythonistas Oath

11

Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse
the temptation to guess.
There should be one only one obvious way
to do it.
Although that way may not be obvious
at first sight.

Pythonistas OathPythonistas Oath

22

Now is better than never.
Although never is often better
than *right* now.
If the implementation is hard to explain,
it's a bad idea.
If the implementation is easy to explain,
it may be a good idea.

Pythonistas OathPythonistas Oath

33

Continuous delivery is
a honking great idea.
If you deploy to production
from commit #1.

Let's do it! I start today.

Pythonistas OathPythonistas Oath

44

Python

