Clinton Roy

Me

Physics

Synchrotro

BR—GHT

Software

Outcomes

Running an Open Source Synchrotron

Clinton Roy¹

Australian Nuclear Science and Technology Organisation

EuroPython 2019

¹clinton.roy@gmail.com

Clinton Roy

Me Physics Synchrotron BR—GHT

2 Physics

1 Me

Software Outcomes

- 3 Synchrotron
- 4 BR—GHT
- 5 Software
- 6 Outcomes

Outline

WARNING

Synchrotron Clinton Roy

Running an Open Source

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

The following slides contain some diagnostic medical images. These are in false colour and are not realistic.

Clinton Roy

Me

Physics

- Synchrotron
- BR-GHT
- Software
- Outcomes

• An Australian

Who am I?

<ロト < 団 ト < 三 ト < 三 ト 三 のへで</p>

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR—GHT

Software

- An Australian
- An Open Source Software Engineer

Running an Open Source Synchrotron

Clinton Roy

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- An Australian
- An Open Source Software Engineer
- Mostly supporting research of various sorts

Running an Open Source Synchrotron

Clinton Roy

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- An Australian
- An Open Source Software Engineer
- Mostly supporting research of various sorts
- A teacher/trainer

Running an Open Source Synchrotron

Clinton Roy

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- An Australian
- An Open Source Software Engineer
- Mostly supporting research of various sorts
- A teacher/trainer
- Helps to run Open Source conferences

Running an Open Source Synchrotron

Clinton Roy

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- An Australian
- An Open Source Software Engineer
- Mostly supporting research of various sorts
- A teacher/trainer
- Helps to run Open Source conferences
 - linux.conf.au, Gold Coast, Australia Jan 13-17

Running an Open Source Synchrotron

Clinton Roy

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- An Australian
- An Open Source Software Engineer
- Mostly supporting research of various sorts
- A teacher/trainer
- Helps to run Open Source conferences
 - linux.conf.au, Gold Coast, Australia Jan 13-17
 - Call for presentations open, anything Open Source

Who am I NOT?

<ロト < 部 > < 部 > < 部 > < 部 > の < で</p>

Clinton Roy

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- A physicist
- A scientist
- A hardware engineer
- A researcher
- An academic
- An electrician

Who am I NOT?

Running an Open Source Synchrotron

Clinton Roy

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- A physicist
- A scientist
- A hardware engineer
- A researcher
- An academic
- An electrician
- But that's OK, as there are plenty of those at the synchrotron

The Whole Spectrum

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron BR—GHT Software

Outcomes

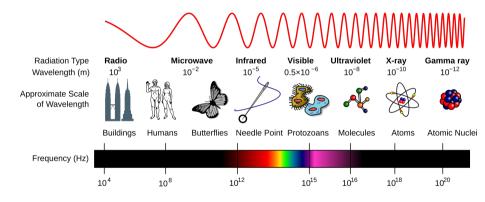


Figure: Wikipedia

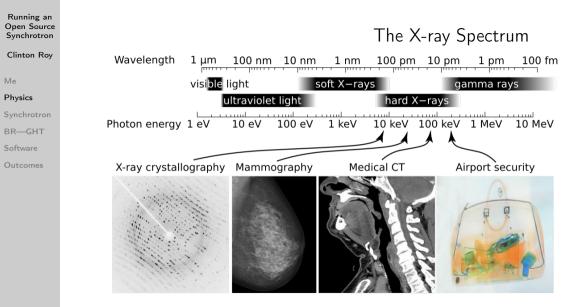


Figure: Wikipedia

What is a Synchrotron?

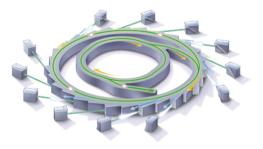


Figure: Aus Synchrotron

- A big research tool to look at really small things
- A microscope that uses X-rays instead of visible light
- A really fancy X-ray machine

Running an Open Source

Synchrotron Clinton Rov

Me Physics Synchrotron BR—GHT

What is a Synchrotron?

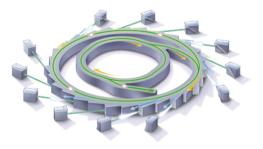
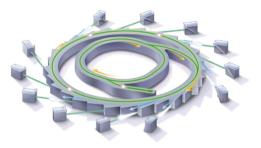


Figure: Aus Synchrotron

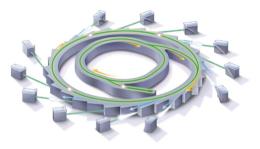

- A big research tool to look at really small things
- A microscope that uses X-rays instead of visible light
- A really fancy X-ray machine

Running an Open Source

Synchrotron Clinton Rov

Me Physics Synchrotron BR—GHT

• (don't repeat any of that, work won't have me back)

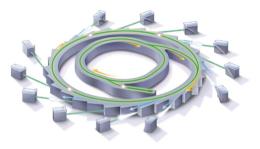


• Accelerate electrons to 99.99% speed of light

Running an Open Source

Synchrotron Clinton Roy

Me Physics Synchrotron BR—GHT Software



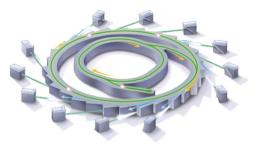
- Accelerate electrons to 99.99% speed of light
- Force the electrons to travel in a circle

Running an Open Source

Synchrotron Clinton Roy

Me Physics **Synchrotron** BR—GHT Software

- Accelerate electrons to 99.99% speed of light
- Force the electrons to travel in a circle

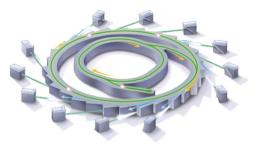

Running an Open Source

Synchrotron Clinton Rov

Me Physics Synchrotron BR—GHT

Outcomes

• When the electrons are forced to turn, they release vast amounts of X-ray energy

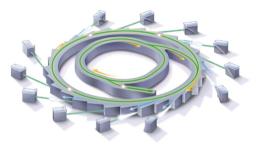

- Accelerate electrons to 99.99% speed of light
- Force the electrons to travel in a circle

Running an Open Source

Synchrotron Clinton Rov

Physics Synchrotron BR—GHT

- When the electrons are forced to turn, they release vast amounts of X-ray energy
- Filter this X-ray energy to make it parallel, a known energy


- Accelerate electrons to 99.99% speed of light
- Force the electrons to travel in a circle

Running an Open Source

Synchrotron Clinton Rov

Synchrotron

- When the electrons are forced to turn, they release vast amounts of X-ray energy
- Filter this X-ray energy to make it parallel, a known energy
- Aim it at a sample, affect the sample (specifics later)

- Accelerate electrons to 99.99% speed of light
- Force the electrons to travel in a circle
- When the electrons are forced to turn, they release vast amounts of X-ray energy
- Filter this X-ray energy to make it parallel, a known energy
- Aim it at a sample, affect the sample (specifics later)
- Detect an aspect of the sample.

Running an Open Source

Synchrotron Clinton Rov

Synchrotron

◆□ > ◆□ > ◆三 > ◆三 > → □ > ◆○ >

Filtering the X-rays

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

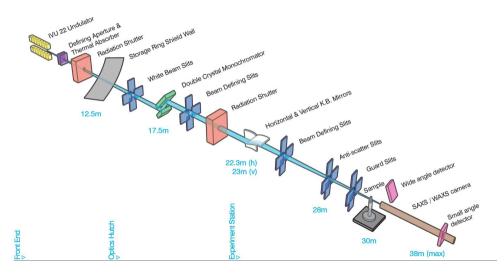


Figure: Aus Synchrotron

<□▶ < □▶ < □▶ < □▶ < □▶ = □ ○ へ ○

My Directorial Debut

Clinton Roy

Me

Physics

Synchrotron

BR—GHT

Software

Outcomes

A walk around the synchroton...

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < で</p>

Clinton Roy

Me

Physics

Synchrotron

BR—GHT

Software

Outcomes

How do X-rays interact with the sample?

Pick your power level, tickle the atoms in just the right way...

- Absorption
- Phase Contrast
- Diffraction
- Spectroscopy
- Fluorescence
- Tomography
- Micro particle/void sizing
- . . .

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

Figure: Wikipedia

Absorption

<ロ> <0</p>

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

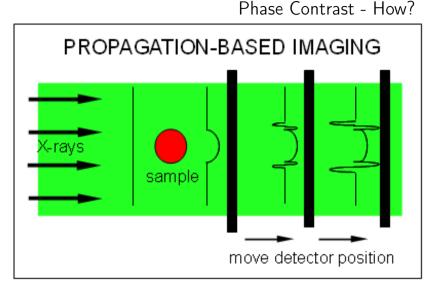


Figure: Wikipedia

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

Phase Contrast - Example

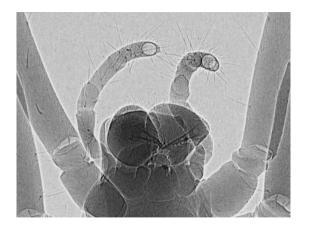


Figure: Wikipedia

Diffraction - How ?

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

Figure: PhysicsOpenLab

Clinton Roy

Diffraction - Example

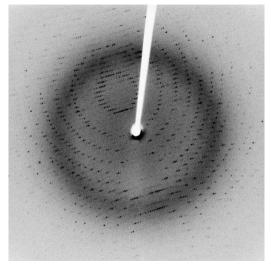


Figure: Wikipedia

▲□ → ▲□ → ▲ □ → ■ □ →

Synchrotron BR—GHT

Me Physics

Software

Tomography - How ?

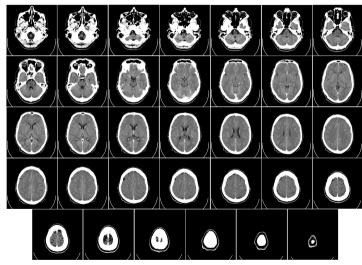
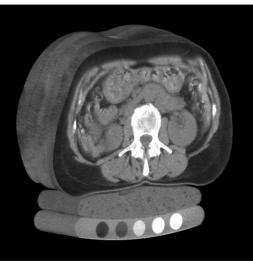


Figure: Wikipedia

Running an Open Source Synchrotron

Clinton Roy

Me


Physics

Synchrotron

BR-GHT

Software

Tomography - Example

Figure: Wikipedia

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Clinton Roy

- Me
- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- X-rays scatter in air, so a lot of the beams are run in vacuum. This makes everything..difficult.
- Accelerators use a lot of power, they need to be cooled with water to stop them melting.
- A lot of the filtering processes have to dump unwanted x-rays into blocks of material, these blocks need cooling or they'll melt.
- The bigger the storage ring, the more x-ray beams can be produced, and the more experiments can be conducted at the same time.
- The medical beamline is far away so it can spread out and scan the entire patient in one sweep.
- Safety means things are cladded in thick concrete and lead.

Why's it so..big?

What's it used for?

Synchrotron Clinton Roy

Running an Open Source

Me

Physics

Synchrotron

BR—GHT

Software

- Medical imaging, diagnostics, cancer treatment
- Microscopic samples, single cells
- Cultural history
- Stress and strain on materials
- Battery technology
- Chemical and biology structures

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

Typical Experiment Run

• Months in advance, researchers submit experiment proposal

Clinton Roy

Me

Physics

Synchrotron

- BR—GHT
- Software
- Outcomes

Typical Experiment Run

- Months in advance, researchers submit experiment proposal
- If accepted, planning commences with beamline staff

Clinton Roy

Me

Physics

Synchrotron

- BR—GHT
- Software
- Outcomes

- Months in advance, researchers submit experiment proposal
- If accepted, planning commences with beamline staff
- Researchers book onsite accommodation

Clinton Roy

Me

Physics

Synchrotron

- BR—GHT
- Software
- Outcomes

- Months in advance, researchers submit experiment proposal
- If accepted, planning commences with beamline staff
- Researchers book onsite accommodation
- On arrival, researchers are allotted specific hours (day & night)

Clinton Roy

Me

Physics

Synchrotron

- BR—GHT
- Software
- Outcomes

- Months in advance, researchers submit experiment proposal
- If accepted, planning commences with beamline staff
- Researchers book onsite accommodation
- On arrival, researchers are allotted specific hours (day & night)
- Researchers prepare and load their samples

Clinton Roy

Me

Physics

Synchrotron

- BR—GHT
- Software
- Outcomes

Typical Experiment Run

- Months in advance, researchers submit experiment proposal
- If accepted, planning commences with beamline staff
- Researchers book onsite accommodation
- On arrival, researchers are allotted specific hours (day & night)
- Researchers prepare and load their samples
- Researchers run their experiment

Clinton Roy

Me

Physics

Synchrotron

- BR—GHT
- Software
- Outcomes

- Months in advance, researchers submit experiment proposal
- If accepted, planning commences with beamline staff
- Researchers book onsite accommodation
- On arrival, researchers are allotted specific hours (day & night)
- Researchers prepare and load their samples
- Researchers run their experiment
- Everything goes perfectly the first time, and no rerun is ever required

Clinton Roy

Me

Physics

Synchrotron

- BR—GHT
- Software
- Outcomes

- Months in advance, researchers submit experiment proposal
- If accepted, planning commences with beamline staff
- Researchers book onsite accommodation
- On arrival, researchers are allotted specific hours (day & night)
- Researchers prepare and load their samples
- Researchers run their experiment
- Everything goes perfectly the first time, and no rerun is ever required
- Experimental data is available for download or local analysis via ASCI Desktop

Samples?

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR—GHT

Software

Outcomes

Pretty much anything that can fit:

• Gas

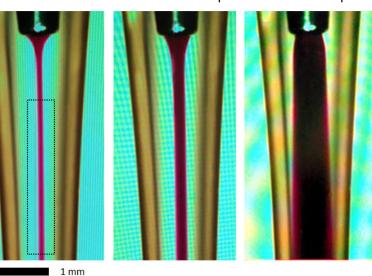
- Solid
- Liquid

Samples can be put under different:

- Pressures
- Temperatures
- Voltages
- Radio waves

Clinton Roy

Me

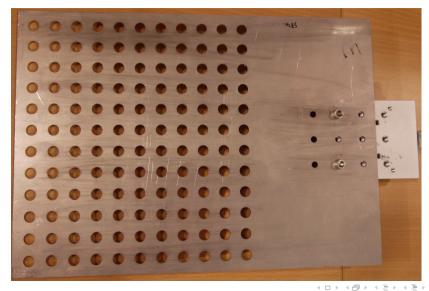

Physics

Synchrotron

BR-GHT

Software

Outcomes


4日 > 4日 > 4日 > 4日 > 4日 > 900

Sample Holders - Liquid

Sample Holders - Solid

2

590

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

BR—GHT Project

Synchrotron Clinton Roy

Running an Open Source

Me

- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- Substantial funding from the Australian Government and Research Partners
- Eight new beamlines with new features
- Trying to build the hw & sw from similar components
 - get more consistency, improve all beamlines at once by sharing software
- BR—GHT+ is trying to share the common systems improvements with the current beamlines
- We can learn off existing beamlines

What users are we targeting?

<ロト < 同ト < 三ト < 三ト < 三ト < 三 の < で</p>

Clinton Roy

- Me
- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- First timers all the way to chief scientists
- Sleep deprived
- Remote and local
- Standard procedure vs special sample environment

Clinton Roy

Me

Physics Synchrotron

BR—GHT

Software

Outcomes

- With some of the current and new beamlines, too much data to transfer
 - Data must be left on site, we must provide analysis tools
 - These tools must be available remotely

Running an Open Source Synchrotron Clinton Roy	Technology Stack
Me	
Physics	User Interface
Synchrotron	
BR—GHT	Ouchastastian
Software	Orchestration
Outcomes	Hardware Abstraction
	Device Drivers
	Hardware

・ロト・西ト・ヨト・ヨー うへの

Running an Open Source Synchrotron Clinton Roy	Technology Stack
Me	
Physics	User Interface
Synchrotron	
BR—GHT	Orchestration
Software	Orchestration
Outcomes	Hardware Abstraction
	Device Drivers
	Hardware - Motors, Detectors, Sample Handlers

・ロト ・ 理 ト ・ ヨ ト ・ 日 ・ うへつ

Running an Open Source Synchrotron Clinton Roy	Technology Stac
Me	
Physics	User Interface
Synchrotron	
BR—GHT	
Software	Orchestration
Outcomes	
	Hardware Abstraction
	Device Drivers - EPICS
	Hardware - Motors, Detectors, Sample Handlers

・ロト・西ト・ヨト・ヨー うへの

Running an Open Source Synchrotron Clinton Roy	Technology Stac
Me Physics	User Interface
Synchrotron	User Interface
BR—GHT	
Software	Orchestration
Outcomes	Hardware Abstraction - PyEpics, Ophyd
	Device Drivers - EPICS
	Hardware - Motors, Detectors, Sample Handlers

<ロ> <0</p>

Running an Open Source Synchrotron Clinton Roy	Technology Stack
Me Physics Synchrotron	User Interface
BR—GHT Software	Orchestration - Bluesky
Outcomes	Hardware Abstraction - PyEpics, Ophyd
	Device Drivers - EPICS
	Hardware - Motors, Detectors, Sample Handlers

・ロト ・ 西 ・ ・ ヨ ・ ・ 日 ・ う く ()

Technology Stack

User Interface - Web, Jypiter

Orchestration - Bluesky

Hardware Abstraction - PyEpics, Ophyd

Device Drivers - EPICS

Hardware - Motors, Detectors, Sample Handlers

Me

Running an Open Source

Synchrotron Clinton Rov

Physics

Synchrotron

BR-GHT

Software

Outcomes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Clinton Roy

Me Physics

Synchrotron

Software

Outcomes

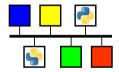
Device Drivers - EPICS

- Open Source C library
- ANSTO hosted a world wide conference of users recently
- Exposes hardware devices on a network bus
- Defines a wide variety of records
 - Analogue in/out
 - Binary in/out
 - Calculations
 - Motors
 - Sensors
 - Custom

Clinton Roy

Me

Physics


Synchrotron

BR—GHT

Software

Outcomes

Hardware Abstraction - PyEpics

- Open Source C/Python library
- provides a Python interface to EPICS network records

Clinton Roy

Me

- Physics
- Synchrotron
- BR—GHT
- Software

Outcomes

Ophyd:

- Open Source Python library
- uses PyEpics to talk to EPICS devices
- encapsulates low level device quirks
- provides a high level API for all devices:
 - trigger() for 'do your thing', whatever that is
 - read() for getting data from a device
 - describe() for getting metadata about read() results, e.g. units
 - stage() and unstage() for get ready and stand down
 - configure(), read_configuration() and describe_configuration()
- Allows individual devices to be organised into hierarchies:
 - one 3D position motor instead of three X, Y, Z motors
 - gross and precision motors controlled as one positional motor

Hardware Abstraction - Ophyd

Orchestration - Bluesky

bluesky

- Open Source Python library
- Orchestrates a collection of Ophyd devices via a Plan
- Can handle any sort of data type
- Automates experiments, while allowing human oversight

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR—GHT

Software

Outcomes

Bluesky - Plans

(日) (日) (日) (日) (日) (日) (日)

Synchrotron Clinton Roy

Running an Open Source

- Me Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- Plans are a sequence of steps on Ophyd devices
- Plans can move motors, open shutters, trigger sensors etc.
- All these things take time, hence Bluesky is asynchronous
- Plans can be built up with other plans
- Handles interruptions well
- Each step adds data and metadata to the experiment document

Clinton Roy

- Me
- Physics
- Synchrotron
- BR-GHT
- Software
- Outcomes

Do nothing - this is the simplest possible experiment!

Example 1: Simplest Possible Run

Run Start: Metadata about this run, including everything we know in advance: time, type of experiment, sample info., etc.

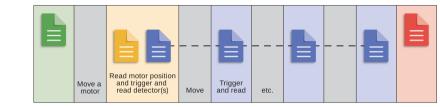
Event Descriptor: Metadata about the readings in the event (units, precision, etc.) and the relevant hardware

Event: Readings and timestamps

Bluesky - Plan - Example 1

Run Stop: Additional metadata known at the end: what time it completed and its exit status (success, aborted, failed)

Figure: NSL-II


Clinton Rov

Me Physics Synchrotron

Software

Bluesky - Plan - Example 2

Example 2: A Simple Scan

Run Start: Metadata about this run, including everything we know in advance: time, type of experiment, sample info., etc.

Event Descriptor: Metadata about the readings in the event (units, precision, etc.) and the relevant hardware

Event: Readings and timestamps

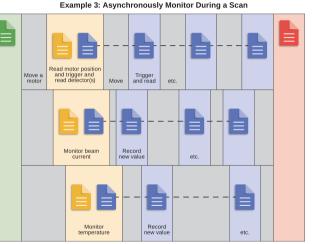
Run Stop: Additional metadata known at the end: what time it completed and its exit status (success, aborted, failed)

Figure: NSL-II

Bluesky - Plan - Example 3

Clinton Roy

Me


Physics

Synchrotron

BR—GHT

Software

Outcomes

Run Start: Metadata about this run, including everything we know in advance: time, type of experiment, sample info., etc.

Event Descriptor: Metadata about the readings in the event (units, precision, etc.) and the relevant hardware

Event: Readings and timestamps

Run Stop: Additional metadata known at the end: what time it completed and its exit status (success, aborted, failed)

Figure: NSL-II

More about Me...

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

• I am a CLI lover

<ロト < 団 ト < 巨 ト < 巨 ト 三 の < で</p>

More about Me...

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

- I am a CLI lover
- I am NOT good at GUIs

User Interface - Web, Jypiter

Clinton Roy

- Me
- Physics
- Synchrotron
- BR—GHT
- Software
- Outcomes

- Excited about the prospect of tools like Pyodide, QT WebAssembly backend
 - If you're not developing for the web (HTML/JS) or WebAssembly, you better have funky hardware.

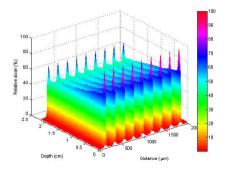
Running an Open Source Synchrotron	This Page Intentionally left blank
Clinton Roy	
Me	
Physics	
Synchrotron	
BR—GHT	
Software	
Outcomes	Please hang around for the post credit scene

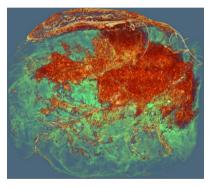
Clinton Roy

Software

Outcomes

Outcomes - Microbeam Radiation Therapy




Figure: ESRF

シック・ 川 (本市)・ (山)・ (日)・

Outcomes - Phase-Contrast Computed Tomography Mammography

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

▲□ → ▲□ → ▲ □ → ■ □ →

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

Outcomes - Malaria First Contact

<ロ> <0</p>

Clinton Roy

Me Physics Synchrotron BR—GHT

Software

Outcomes

Figure: The Conversation

Outcomes - Degas's Portrait of a Women

Figure: The Conversation

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes

Outcomes - Red Bellied Parrot PCD Vaccine

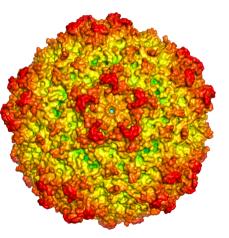


Figure: ABC Australia

Outcomes - Micro nutrients in Grain

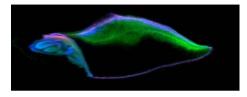


Figure: The Conversation, iron (red), copper (green), zinc (blue)

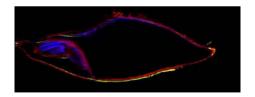


Figure: The Conversation, potassium (red), calcium (green), manganese (blue)

Running an Open Source Synchrotron

Clinton Roy

Me

Physics

Synchrotron

BR-GHT

Software

Outcomes