
Software patterns for 
productive teams
Radoslav Georgiev, @Rado_g, EuroPython 2019



3rd EuroPython for me ✔



Goal of this talk:
Be practical, pragmatic & provide 
value.



Goal of this talk:
“Aha! We should try this” 
moment.



Context:
I’m CEO of HackSoft - a software 
development company.



I’ll provide cherry-picked 
examples on the topic from our 
experience.



Agenda

1. Team leader’s perspective.

2. Software development.

3. Features.

4. Explicit is better than implicit.



Team leader’s perspective.
What I care for, when I’m a team lead.



Team leader’s perspective

1. Productivity (we need to ship features)
2. Confidence (we need to keep the product stable)
3. Independence (make their own decisions)
4. Well-being / stress of team members (burnout is bad)
5. Less context switching for everyone (don’t break the flow)
6. Someone being blocked by something (feeling unproductive)
7. Morale (overall feeling)



Constant regressions.



Problems:

● Production is constantly broken / 
something’s not working.

● Quick “proof of concept” is being turned 
into production-ready version.

● Can decrease team morale.

Constant regressions

Possible solutions:

● Stop all feature development until 
software is stable again.

● Add CI & run tests / lints if you don’t have 
one.

● Add a staging environment & don’t test on 
production.



Constant merge conflicts.



Constant merge conflicts



Constant merge conflicts



Constant merge conflicts

● Split python modules by domain.

● Split big test files into test file per thing that you are testing.

● Constantly watch for merge conflicts - this means something’s not right.



Constant merge conflicts



Local setup.
A specific type of hell.



Local setup - accounts

● Devs can’t even start working on a feature if they can’t get something 
running locally.

● Make sure everyone has an account / access / keys for everything needed. 
Do that before they need it.

● Keep a spreadsheet of accounts & 3rd parties. Easier to track & manage.



Local setup - accounts



Local setup - documentation

● Relentlessly document everything related to local setup.

● Test it and keep it updated.

● GitHub / Confluence / whatever is working for you.

● Onboarding new people is your final test.



Local setup - setup scripts

./setup/bootstrap.sh # get a clean & ready to go local dev environment

./setup/xero.sh # Setup additional 3rd party

./setup/gocardless.sh # Setup additional 3rd party

./setup/everything.sh # Setup all 3rd parties in a clean local dev environment



Speed of tests.
Very important & often overlooked.



Speed of tests

● If you are working in an environment with small PRs, merge often & deploy 
often ...

● … and your tests are taking 10 minutes to run on CI ...

● …. you are not going to feel very productive & you’ll often find yourself 
waiting or CI.



pytest-xdist / py.test -x -n 4



Optimize your tests. It pays off!



Features
Make sure everyone are on the same page with this.



● If the features are described poorly, people are going to build the wrong 
thing.

● Clients often don’t know the exact details of the things they want, so ask 
them a lot of questions!

● Make sure everyone on your team actually reads the feature descriptions 
fully, before starting to work.

Feature descriptions



Feature blocking



Feature blocking

● Pair people around shared parts, so they are on the same page.

● Identify such scenarios quickly & resolve them. Otherwise work is going 
to be deleted / undone.

● Such scenarios may cause conflicts.



Explicit is better than implicit.



There’s a bug!



There’s a bug!

● Have an explicit “firefighter” for the week.

● Rotate everyone on that position, each week.

● This “firefighter” is the first responder when there’s an issue. A lot of the 
issues can be resolved quickly, without sacrificing all of the team’s 
attention.



Explicit Git & GitHub 
workflows.
No matter what you use.



Refactoring PRs separated 
from feature PRs.
Easier to read, easier to catch problems.



Team rules.



Team rules

● Write down everything from “This is how we do things here”.

● Better visibility at team dynamics & explicit expectations from everyone.

● A great tool for onboarding new people.

● Revisit & update!



Have an explicit team lead.
Otherwise, there is going to be an implicit one.



Have an explicit team lead.

● Know who the leader is. That’s the person making the calls when needed & 
the person who’s responsible for the team success.

● Team leads should focus on enabling their teams do their job well. If this 
means less coding - then so be it.

● We rotate team leads every week, so everyone knows what it’s like to be 
on that position. Gives perspective.



Conflicts.
You cannot avoid them, but you have to handle them.



● Catch early & try to overcommunicate with all parties involved.

● Read books on management & leadership. Use your gut feeling.

● Have perspective on what’s important.

● Beware of toxic people & malicious obedience.

● Fire, if necessary (easier said than done)

Conflicts



Adapt.



Adapt

● If something’s not currently working - understand why & make changes.

● Establish processes but don’t follow them blindly.

● Teams are different (people are different).

● Things change.



Ask your developers for pain 
points. They will tell you.
And do something about them.



Thank you. Questions?

Radoslav Georgiev, CEO of HackSoft
@Rado_g
radorado@hacksoft.io


