Tips for the Scientific
Programmer

Michele Simionato@GEM Foundation
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This talk is about "Middle Performance Computing"

o profiling is invaluable for finding bottlenecks like
slow operations in inner loops, but | do that 1-2
times per year

e what it is really essential is instrumenting your

code
e what makes the difference is using the right

library and the right architecture / data structure



Input/output fFormats

e | learned the hard way a very essential lesson:
never, EVER change the input formats

e You cannot. Really, you can not.

e Evenifitisimpossible to get right the input
format at the beginning @

e There is more freedom with the output formats

e Where you can really work is on the internal
formats



Inputs Formats we are using

INI (good, but TOML would have been better)
XML/NRML/XSD (could have been simpler)
CSV (should have been used more)

HDF5 (in rare cases: UCERF3, GMPE tables)
ZIP (okay)



Output fFormats we are using

XML / NRML: we are removing it

CSV with pre-header: we are using it more and
more

HDF5: used sometimes

NPZ: by necessity
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Internal formats we are using

e .hdf5

e .toml

e .sqglite
They are good i



The choice of the data format has a big performance
impact

e XML/CSV exporters

e XML/CSV importers

e clearly the choice of the internal formats is even
more important: HDF5 is the way to go



Task distribution

e We are using multiprocessing/zmg on a single
machine
e and celery/rabbitmqg/zmg on a cluster

i o OMQ

e celery/rabbitmqis not ideal for our use case but it
works enough, including the REVOKE functionality
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Slow tasks

e slow tasks have been a PITA for years &

e 3 few months ago we had a breakthrough:
subtasks

o we made the output receiver able to recognize
tuples of the form (callable, argl, arg2,
. . . ) and to send them as tasks



task producing subtasks:

def task_splitter(sources, argl, arg2, ...):
blocks = split_in_blocks(sources, maxweight)
for block in blocks[:-1]:
yield (task_func, block, argl, arg2, ...)
yield task_func(block[-1], argl, arg2, ...)

heavy tasks can be split in many light tasks

the weight of a seismic source is the humber of
earthquakes it can produce

it can be very different from the duration of the
calculation



Calibrating the computation

e we introduced a task splitter able to perform a
subset of the calculation and to estimate the
expected task duration depending on the weight

e it can split the calculation in subtasks with
estimated runtime smaller that an user-given
task_duration parameter



Automatic task splitting

successively, we made the engine smart enough to
determine a sensible default for the
task_duration, depending on the number of
ruptures, sites and levels

=> slow tasks are greatly reduced

except for non-splittable sources




Solving the data transfer issue

e we switched to using zmgq to return the outputs s

e we switched to NFS to read the inputs (and it is
also useful fFor sharing the code)

e important: do not produce too many tasks, the

data transfer will kill you, or the output queue will
run out of memory, or both



Memory occupation

e a big problem we had to fight constantly is running
out of memory (even with 1280 GB split on 10
machines)

e notice that running out of memory early can be a
good thing

e itis all about the tradeoff memory/speed

e NB: memory allocation can be the dominating
fFactor for performance



How to reduce the required memory

e use as much as possible numpy arrays instead of
Python objects

e use a site-by-site algorithm if you really must

e remember that big tasks are still better, if you
have enough memory

e we measure the memory with
psutil.Process(pid) . .memory_info()



Saving memory by yielding partial results

def big_task(sources, argl, arg2, ...):
accum = []
for src 1in sources:
accum.append(process(src, argl, arg2, ...)
if len(accum) > max_size:
yield accum
accum.clear ()
if accum:
yield accum

Lesson: a nice parallelization framework really helps






