
Tips for the Scienti�c
Programmer

Michele Simionato@GEM Foundation

https://www.globalquakemodel.org/




This talk is about "Middle Performance Computing"

profiling is invaluable for finding bottlenecks like
slow operations in inner loops, but I do that 1-2
times per year
what it is really essential is instrumenting your
code
what makes the difference is using the right
library and the right architecture / data structure



Input/output formats

I learned the hard way a very essential lesson:
never, EVER change the input formats
You cannot. Really, you can not.
Even if it is impossible to get right the input
format at the beginning 
There is more freedom with the output formats
Where you can really work is on the internal
formats



Inputs formats we are using

INI (good, but TOML would have been better)
XML/NRML/XSD (could have been simpler)
CSV (should have been used more)
HDF5 (in rare cases: UCERF3, GMPE tables)
ZIP (okay)



Output formats we are using

XML / NRML: we are removing it
CSV with pre-header: we are using it more and
more
HDF5: used sometimes
NPZ: by necessity





Internal formats we are using

.hdf5

.toml

.sqlite
They are good 



The choice of the data format has a big performance
impact

XML/CSV exporters
XML/CSV importers
clearly the choice of the internal formats is even
more important: HDF5 is the way to go



Task distribution

we are using multiprocessing/zmq on a single
machine
and celery/rabbitmq/zmq on a cluster

  

celery/rabbitmq is not ideal for our use case but it
works enough, including the REVOKE functionality



our biggest issue :-(



Slow tasks

slow tasks have been a PITA for years 
a few months ago we had a breakthrough:
subtasks
we made the output receiver able to recognize
tuples of the form (callable, arg1, arg2,
...) and to send them as tasks



task producing subtasks:

heavy tasks can be split in many light tasks
the weight of a seismic source is the number of
earthquakes it can produce
it can be very different from the duration of the
calculation

def task_splitter(sources, arg1, arg2, ...):
  blocks = split_in_blocks(sources, maxweight)
  for block in blocks[:-1]:
       yield (task_func, block, arg1, arg2, ...)
  yield task_func(block[-1], arg1, arg2, ...)



Calibrating the computation

we introduced a task splitter able to perform a
subset of the calculation and to estimate the
expected task duration depending on the weight
it can split the calculation in subtasks with
estimated runtime smaller that an user-given
task_duration parameter



Automatic task splitting

successively, we made the engine smart enough to
determine a sensible default for the
task_duration, depending on the number of
ruptures, sites and levels
=> slow tasks are greatly reduced
except for non-splittable sources



Solving the data transfer issue

we switched to using zmq to return the outputs 
we switched to NFS to read the inputs (and it is
also useful for sharing the code)
important: do not produce too many tasks, the
data transfer will kill you, or the output queue will
run out of memory, or both



Memory occupation

a big problem we had to fight constantly is running
out of memory (even with 1280 GB split on 10
machines)
notice that running out of memory early can be a
good thing
it is all about the tradeoff memory/speed
NB: memory allocation can be the dominating
factor for performance



How to reduce the required memory

use as much as possible numpy arrays instead of
Python objects
use a site-by-site algorithm if you really must
remember that big tasks are still better, if you
have enough memory
we measure the memory with
psutil.Process(pid).memory_info()



Saving memory by yielding partial results

Lesson: a nice parallelization framework really helps

def big_task(sources, arg1, arg2, ...):
   accum = []
   for src in sources:
       accum.append(process(src, arg1, arg2, ...)
       if len(accum) > max_size:
          yield accum
          accum.clear()  # save memory
   if accum:
      yield accum



Questions?


