Tips for the Scientific
Programmer

Michele Simionato@GEM Foundation

https://www.globalquakemodel.org/

cafulshe Shire gl

©))22

Global Seisi

et BT g

g et il L R g gt = S) R 4w g

s dus ek
[y)

Global Earthquake Model
‘@;.

L

TR

g

S il WIETRLT | - S BIV-C-SA

180

L1

Global Seismic Fatalities Map

1

e
sty

o

e
corvact
e

MW
i
i
i1
I !

|
m_
|

il
il
Wi
i _,__m_

il
il
i
i
f

i _.m_m_”mmmm

"
[
.
i
=
g
ey
e o
an

I
it
i

y

‘.—-r—

2

GFE

e F" Timi

AR arvr [EXFF ©

%

This talk is about "Middle Performance Computing"

o profiling is invaluable for finding bottlenecks like
slow operations in inner loops, but | do that 1-2
times per year

e what it is really essential is instrumenting your

code
e what makes the difference is using the right

library and the right architecture / data structure

Input/output fFormats

e | learned the hard way a very essential lesson:
never, EVER change the input formats

e You cannot. Really, you can not.

e Evenifitisimpossible to get right the input
format at the beginning @

e There is more freedom with the output formats

e Where you can really work is on the internal
formats

Inputs Formats we are using

INI (good, but TOML would have been better)
XML/NRML/XSD (could have been simpler)
CSV (should have been used more)

HDF5 (in rare cases: UCERF3, GMPE tables)
ZIP (okay)

Output fFormats we are using

XML / NRML: we are removing it

CSV with pre-header: we are using it more and
more

HDF5: used sometimes

NPZ: by necessity

[m OpenQuake X

=l (99+) Anim

« = C & https://oq1.wilson.openquake.org/engine/24329/outputs

i Apps Im MyPages @B Erlang Wm Ebooks

)))) OPENQUAKE enNGINE

B Python [GEM

Back to Calculations Admin

GitPitch 5

Outputs from calculation 24329

32393

32394

32395

32396

32397

32398

32399

Name

Full Report

Hazard Curves

Hazard Maps

Input Files

Realizations

Seismic Source Groups

Uniform Hazard Spectra

Type

fullreport

hcurves

hmaps

input

realizations

SOUrCEeEroups

uhs

ons | Fon

Action

nload rst

nload csv
nload xmil

nload npz

nload csv
nload xml

nload npz

nload zip

nload csv

nload csv

nload csv
nload xmil

nload npz

Download hdfs datastore

I QT 1 0 T

=k printing -}

" 0)99!:

Hello, michele

= i [oEM

Internal formats we are using

e .hdf5

e .toml

e .sqglite
They are good i

The choice of the data format has a big performance
impact

e XML/CSV exporters

e XML/CSV importers

e clearly the choice of the internal formats is even
more important: HDF5 is the way to go

Task distribution

e We are using multiprocessing/zmg on a single
machine
e and celery/rabbitmqg/zmg on a cluster

i o OMQ

e celery/rabbitmqis not ideal for our use case but it
works enough, including the REVOKE functionality

=723

tasks

©)

120 +

100 A

80 A

60

20+

our biggest issue :-(

T
0 500 1000 1500 2000
mean=615+-349 seconds

T
2500

T
3000

OQ

JI OPENQUAK|

are gk

Slow tasks

e slow tasks have been a PITA for years &

e 3 few months ago we had a breakthrough:
subtasks

o we made the output receiver able to recognize
tuples of the form (callable, argl, arg2,
. . .) and to send them as tasks

task producing subtasks:

def task_splitter(sources, argl, arg2, ...):
blocks = split_in_blocks(sources, maxweight)
for block in blocks[:-1]:
yield (task_func, block, argl, arg2, ...)
yield task_func(block[-1], argl, arg2, ...)

heavy tasks can be split in many light tasks

the weight of a seismic source is the humber of
earthquakes it can produce

it can be very different from the duration of the
calculation

Calibrating the computation

e we introduced a task splitter able to perform a
subset of the calculation and to estimate the
expected task duration depending on the weight

e it can split the calculation in subtasks with
estimated runtime smaller that an user-given
task_duration parameter

Automatic task splitting

successively, we made the engine smart enough to
determine a sensible default for the
task_duration, depending on the number of
ruptures, sites and levels

=> slow tasks are greatly reduced

except for non-splittable sources

Solving the data transfer issue

e we switched to using zmgq to return the outputs s

e we switched to NFS to read the inputs (and it is
also useful fFor sharing the code)

e important: do not produce too many tasks, the

data transfer will kill you, or the output queue will
run out of memory, or both

Memory occupation

e a big problem we had to fight constantly is running
out of memory (even with 1280 GB split on 10
machines)

e notice that running out of memory early can be a
good thing

e itis all about the tradeoff memory/speed

e NB: memory allocation can be the dominating
fFactor for performance

How to reduce the required memory

e use as much as possible numpy arrays instead of
Python objects

e use a site-by-site algorithm if you really must

e remember that big tasks are still better, if you
have enough memory

e we measure the memory with
psutil.Process(pid) . .memory_info()

Saving memory by yielding partial results

def big_task(sources, argl, arg2, ...):
accum = []
for src 1in sources:
accum.append(process(src, argl, arg2, ...)
if len(accum) > max_size:
yield accum
accum.clear ()
if accum:
yield accum

Lesson: a nice parallelization framework really helps

