
J a m e s  S a r y e r w i n n i e

A case study in multi-threading, multi-processing, and asyncio

Downloading a Billion Files in Python

@ j s a r y e r



Our Task



Our Task

There is a remote server that stores files



Our Task

There is a remote server that stores files

The files can be accessed through a REST API



Our Task
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The files can be accessed through a REST API
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Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

Approximately one billion files, 100 bytes per file

What client machine will this run on?

What about the network between the client and server?

How many files are on the remote server?

Please have this done as soon as possible

When do you need this done?
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File Server Rest API

GET /list

GET /get/{filename}

{"FileNames": ["file1", "file2", ...]}

{"FileNames": ["file1", "file2", ...],
 "NextMarker": "pagination-token"}

(File blob content)

GET /list?next-marker={token}
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Caveats

This is a simplified case study.

The results shown here don't necessarily generalize.

Not an apples to apples comparison, each approach does things slightly different

Always profile and test for yourself

Sometimes concrete examples can be helpful



Synchronous 
Version 

Simplest thing that could possibly work.
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def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'
    get_url = f'{hostname}/get'

    response = requests.get(list_url)
    response.raise_for_status()
    content = json.loads(response.content)
    while True:
        for filename in content['FileNames']:
            remote_url = f'{get_url}/{filename}'
            download_file(remote_url,
                          os.path.join(outdir, filename))
        if 'NextMarker' not in content:
            break
        response = requests.get(
            f'{list_url}?next-marker={content["NextFile"]}')
        response.raise_for_status()
        content = json.loads(response.content)
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def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'
    get_url = f'{hostname}/get'

    response = requests.get(list_url)
    response.raise_for_status()
    content = json.loads(response.content)
    while True:
        for filename in content['FileNames']:
            remote_url = f'{get_url}/{filename}'
            download_file(remote_url,
                          os.path.join(outdir, filename))
        if 'NextMarker' not in content:
            break
        response = requests.get(
            f'{list_url}?next-marker={content["NextFile"]}')
        response.raise_for_status()
        content = json.loads(response.content)



def download_file(remote_url, local_filename):
    response = requests.get(remote_url)
    response.raise_for_status()
    with open(local_filename, 'wb') as f:
        f.write(response.content)
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833.3 hours
34.7 days

One request 0.003 seconds

One billion requests 3,000,000 seconds

Synchronous Results
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Multithreading

List Files can't be parallelized.

WorkerThread-1

WorkerThread-2

WorkerThread-3One thread calls List Files and puts 
the filenames on a queue.Queue

queue.Queue

Results Queue

Result thread prints progress, tracks 
overall results, failures, etc.



def download_files(host, port, outdir, num_threads):
    #  ... same constants as before ...

    work_queue = queue.Queue(MAX_SIZE)
    result_queue = queue.Queue(MAX_SIZE)

    threads = []
    for i in range(num_threads):
        t = threading.Thread(
            target=worker_thread, args=(work_queue, result_queue))
        t.start()
        threads.append(t)
    result_thread = threading.Thread(target=result_poller,
                                     args=(result_queue,))
    result_thread.start()
    threads.append(result_thread)

    # ...

    response = requests.get(list_url)
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    response = requests.get(list_url)
    response.raise_for_status()
    content = json.loads(response.content)
    while True:
        for filename in content['FileNames']:
            remote_url = f'{get_url}/{filename}'
            outfile = os.path.join(outdir, filename)
            work_queue.put((remote_url, outfile))
        if 'NextFile' not in content:
            break
        response = requests.get(
            f'{list_url}?next-marker={content["NextFile"]}')
        response.raise_for_status()
        content = json.loads(response.content)



    response = requests.get(list_url)
    response.raise_for_status()
    content = json.loads(response.content)
    while True:
        for filename in content['FileNames']:
            remote_url = f'{get_url}/{filename}'
            outfile = os.path.join(outdir, filename)
            work_queue.put((remote_url, outfile))
        if 'NextFile' not in content:
            break
        response = requests.get(
            f'{list_url}?next-marker={content["NextFile"]}')
        response.raise_for_status()
        content = json.loads(response.content)



def worker_thread(work_queue, result_queue):
    while True:
        work = work_queue.get()
        if work is _SHUTDOWN:
            return
        remote_url, outfile = work
        download_file(remote_url, outfile)
        result_queue.put(_SUCCESS)



def worker_thread(work_queue, result_queue):
    while True:
        work = work_queue.get()
        if work is _SHUTDOWN:
            return
        remote_url, outfile = work
        download_file(remote_url, outfile)
        result_queue.put(_SUCCESS)
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One request 0.0036 seconds

One billion requests 3,600,000 seconds
1000.0 hours

41.6 days

Multithreaded Results   -    10 threads
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One request 0.0042 seconds

One billion requests 4,200,000 seconds
1166.67 hours

48.6 days

Multithreaded Results   -    100 threads



Why?

Not necessarily IO bound due to low latency and small file size

GIL contention, overhead of passing data through queues



Things to keep in mind

The real code is more complicated, ctrl-c, graceful shutdown, etc.

Debugging is much harder, non-deterministic

The more you stray from stdlib abstractions, more likely to encounter race conditions

Can't use concurrent.futures map() because of large number of files



Multiprocessing 



Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

Approximately one billion files, 100 bytes per file

What client machine will this run on?

What about the network between the client and server?

How many files are on the remote server?

Please have this done as soon as possible

When do you need this done?
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WorkerProcess-3Download one page at a time in 
parallel across multiple processes



from concurrent import futures

def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'

    all_pages = iter_all_pages(list_url)
    downloader = Downloader(host, port, outdir)
    with futures.ProcessPoolExecutor() as executor:
        for page in all_pages:
            future_to_filename = {}
            for filename in page:
                future = executor.submit(downloader.download,
                                         filename)
                future_to_filename[future] = filename
            for future in futures.as_completed(future_to_filename):
                future.result()
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    downloader = Downloader(host, port, outdir)
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Start parallel downloads



from concurrent import futures

def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'

    all_pages = iter_all_pages(list_url)
    downloader = Downloader(host, port, outdir)
    with futures.ProcessPoolExecutor() as executor:
        for page in all_pages:
            future_to_filename = {}
            for filename in page:
                future = executor.submit(downloader.download,
                                         filename)
                future_to_filename[future] = filename
            for future in futures.as_completed(future_to_filename):
                future.result()

Wait for downloads to finish



def iter_all_pages(list_url):
    session = requests.Session()
    response = session.get(list_url)
    response.raise_for_status()
    content = json.loads(response.content)
    while True:
        yield content['FileNames']
        if 'NextFile' not in content:
            break
        response = session.get(
            f'{list_url}?next-marker={content["NextFile"]}')
        response.raise_for_status()
        content = json.loads(response.content)



class Downloader:
    # ...

    def download(self, filename):
        remote_url = f'{self.get_url}/{filename}'
        response = self.session.get(remote_url)
        response.raise_for_status()
        outfile = os.path.join(self.outdir, filename)
        with open(outfile, 'wb') as f:
            f.write(response.content)
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One request 0.00032 seconds

One billion requests 320,000 seconds

88.88 hours

Multiprocessing Results   -    16 processes

3.7 days



Things to keep in mind

Speed improvements due to truly running in parallel

Debugging is much harder, non-deterministic, pdb doesn't work out of the box

IPC overhead between processes higher than threads

Tradeoff between entirely in parallel vs. parallel chunks
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Asyncio

Create an asyncio.Task for each file. 
This immediately starts the download.

Move on to the next page and start 
creating tasks.

Meanwhile tasks from the first page 
will finish downloading their file.

All in a single process 

All in a single thread 

Switch tasks when 
waiting for IO 

Should keep CPU busy



import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'
    get_url = f'{hostname}/get'
    semaphore = asyncio.Semaphore(MAX_CONCURRENT)
    task_queue = asyncio.Queue(MAX_SIZE)
    asyncio.create_task(results_worker(task_queue))
    async with ClientSession() as session:
        async for filename in iter_all_files(session, list_url):
            remote_url = f'{get_url}/{filename}'
            task = asyncio.create_task(
                download_file(session, semaphore, remote_url,
                              os.path.join(outdir, filename))
            )
            await task_queue.put(task)
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import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'
    get_url = f'{hostname}/get'
    semaphore = asyncio.Semaphore(MAX_CONCURRENT)
    task_queue = asyncio.Queue(MAX_SIZE)
    asyncio.create_task(results_worker(task_queue))
    async with ClientSession() as session:
        async for filename in iter_all_files(session, list_url):
            remote_url = f'{get_url}/{filename}'
            task = asyncio.create_task(
                download_file(session, semaphore, remote_url,
                              os.path.join(outdir, filename))
            )
            await task_queue.put(task)



import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'
    get_url = f'{hostname}/get'
    semaphore = asyncio.Semaphore(MAX_CONCURRENT)
    task_queue = asyncio.Queue(MAX_SIZE)
    asyncio.create_task(results_worker(task_queue))
    async with ClientSession() as session:
        async for filename in iter_all_files(session, list_url):
            remote_url = f'{get_url}/{filename}'
            task = asyncio.create_task(
                download_file(session, semaphore, remote_url,
                              os.path.join(outdir, filename))
            )
            await task_queue.put(task)



import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
    hostname = f'http://{host}:{port}'
    list_url = f'{hostname}/list'
    get_url = f'{hostname}/get'
    semaphore = asyncio.Semaphore(MAX_CONCURRENT)
    task_queue = asyncio.Queue(MAX_SIZE)
    asyncio.create_task(results_worker(task_queue))
    async with ClientSession() as session:
        async for filename in iter_all_files(session, list_url):
            remote_url = f'{get_url}/{filename}'
            task = asyncio.create_task(
                download_file(session, semaphore, remote_url,
                              os.path.join(outdir, filename))
            )
            await task_queue.put(task)



async def iter_all_files(session, list_url):
    async with session.get(list_url) as response:
        if response.status != 200:
            raise RuntimeError(f"Bad status code: {response.status}")
        content = json.loads(await response.read())
    while True:
        for filename in content['FileNames']:
            yield filename
        if 'NextFile' not in content:
            return
        next_page_url = f'{list_url}?next-marker={content["NextFile"]}'
        async with session.get(next_page_url) as response:
            if response.status != 200:
                raise RuntimeError(f"Bad status code: {response.status}")
            content = json.loads(await response.read())



async def iter_all_files(session, list_url):
    async with session.get(list_url) as response:
        if response.status != 200:
            raise RuntimeError(f"Bad status code: {response.status}")
        content = json.loads(await response.read())
    while True:
        for filename in content['FileNames']:
            yield filename
        if 'NextFile' not in content:
            return
        next_page_url = f'{list_url}?next-marker={content["NextFile"]}'
        async with session.get(next_page_url) as response:
            if response.status != 200:
                raise RuntimeError(f"Bad status code: {response.status}")
            content = json.loads(await response.read())



async def download_file(session, semaphore, remote_url, local_filename):
    async with semaphore:
        async with session.get(remote_url) as response:
            contents = await response.read()
            # Sync version.
            with open(local_filename, 'wb') as f:
                f.write(contents)
            return local_filename



async def download_file(session, semaphore, remote_url, local_filename):
    async with semaphore:
        async with session.get(remote_url) as response:
            contents = await response.read()
            # Sync version.
            with open(local_filename, 'wb') as f:
                f.write(contents)
            return local_filename
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One request 0.00056 seconds

One billion requests 560,000 seconds
155.55 hours

6.48 days

Asyncio Results



Summary
Approach Single	Request	Time	(s) Days

Synchronous 0.003 34.7

Multithread 0.0036 41.6

Multiprocess 0.00032 3.7

Asyncio 0.00056 6.5
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The main thread of the worker process is 
a bridge to the event loop running on a 
separate thread.  It sends the pagination 
token to the async Queue.
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The event loop makes the List call 
with the provided pagination token "foo".

{"FileNames": [...],
 "NextMarker": "bar"}
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The next pagination token "bar", eventually 
makes its way back to the main process.



WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

The next pagination token "bar", eventually 
makes its way back to the main process.



WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

While another process starts goes through 
the same steps, WorkerProcess-1 is 
downloading 1000 files using asyncio.
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We get to leverage all our cores.1.

We download individual files 
efficiently with asyncio.

2.
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We get to leverage all our cores.1.

We download individual files 
efficiently with asyncio.

2.

Minimal IPC overhead, only passing 
pagination tokens across processes, only 

one per thousand files.

3.
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One request 0.0000303 seconds

One billion requests 30,300 seconds

Combo Results



One request 0.0000303 seconds

8.42 hours
One billion requests 30,300 seconds

Combo Results



Summary

Approach Single	Request	Time	(s) Days

Synchronous 0.003 34.7

Multithread 0.0036 41.6

Multiprocess 0.00032 3.7

Asyncio 0.00056 6.5

Combo 0.0000303 0.35



Tradeoff between simplicity and speed

Multiple orders of magnitude difference based on approach used

Lessons Learned

Need to have max bounds when using queueing or any task scheduling



Thanks!

J a m e s  S a r y e r w i n n i e @ j s a r y e r


