
J a m e s S a r y e r w i n n i e

A case study in multi-threading, multi-processing, and asyncio

Downloading a Billion Files in Python

@ j s a r y e r

Our Task

Our Task

There is a remote server that stores files

Our Task

There is a remote server that stores files

The files can be accessed through a REST API

Our Task

There is a remote server that stores files

The files can be accessed through a REST API

Our task is to download all the files on the
remote server to our client machine

Our Task (the details)

Our Task (the details)

What client machine will this run on?

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

What client machine will this run on?

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

What client machine will this run on?

What about the network between the client and server?

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

What client machine will this run on?

What about the network between the client and server?

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

What client machine will this run on?

What about the network between the client and server?

How many files are on the remote server?

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

Approximately one billion files, 100 bytes per file

What client machine will this run on?

What about the network between the client and server?

How many files are on the remote server?

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

Approximately one billion files, 100 bytes per file

What client machine will this run on?

What about the network between the client and server?

How many files are on the remote server?

When do you need this done?

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

Approximately one billion files, 100 bytes per file

What client machine will this run on?

What about the network between the client and server?

How many files are on the remote server?

Please have this done as soon as possible

When do you need this done?

Files

Page Page Page

File Server Rest API

File Server Rest API GET /list

Files

Page Page

FileNames

NextMarker

File Server Rest API GET /list

Files

Page Page

FileNames

NextMarker

{"FileNames": [
 "file1", "file2", ...],
 "NextMarker": "pagination-token"}

File Server Rest API GET /list?next-marker=token

Files

Page Page

FileNames

NextMarker

File Server Rest API GET /list?next-marker=token

Files

Page Page

FileNames

NextMarker

{"FileNames": [
 "file1", "file2", ...],
 "NextMarker": "pagination-token"}

File Server Rest API

GET /list

GET /get/{filename}

{"FileNames": ["file1", "file2", ...]}

{"FileNames": ["file1", "file2", ...],
 "NextMarker": "pagination-token"}

(File blob content)

GET /list?next-marker={token}

Caveats

This is a simplified case study.

The results shown here don't necessarily generalize.

Not an apples to apples comparison, each approach does things slightly different

Sometimes concrete examples can be helpful

Caveats

This is a simplified case study.

The results shown here don't necessarily generalize.

Not an apples to apples comparison, each approach does things slightly different

Always profile and test for yourself

Sometimes concrete examples can be helpful

Synchronous
Version

Simplest thing that could possibly work.

Synchronous

Page Page Page

Synchronous

PagePage

Synchronous

PagePage

Synchronous

PagePage

Synchronous

PagePage

Synchronous

PagePage

Synchronous

PagePage

Synchronous

PagePage

Synchronous

Page

Synchronous

Page

Synchronous

Page

Synchronous

Page

Synchronous

Page

Synchronous

Page

Synchronous

Page

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 download_file(remote_url,
 os.path.join(outdir, filename))
 if 'NextMarker' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextFile"]}')
 response.raise_for_status()
 content = json.loads(response.content)

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 download_file(remote_url,
 os.path.join(outdir, filename))
 if 'NextMarker' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextMarker"]}')
 response.raise_for_status()
 content = json.loads(response.content)

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 download_file(remote_url,
 os.path.join(outdir, filename))
 if 'NextMarker' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextMarker"]}')
 response.raise_for_status()
 content = json.loads(response.content)

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 download_file(remote_url,
 os.path.join(outdir, filename))
 if 'NextMarker' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextMarker"]}')
 response.raise_for_status()
 content = json.loads(response.content)

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 download_file(remote_url,
 os.path.join(outdir, filename))
 if 'NextMarker' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextMarker"]}')
 response.raise_for_status()
 content = json.loads(response.content)

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 download_file(remote_url,
 os.path.join(outdir, filename))
 if 'NextMarker' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextFile"]}')
 response.raise_for_status()
 content = json.loads(response.content)

def download_file(remote_url, local_filename):
 response = requests.get(remote_url)
 response.raise_for_status()
 with open(local_filename, 'wb') as f:
 f.write(response.content)

Synchronous Results

One request 0.003 seconds

Synchronous Results

One request 0.003 seconds

One billion requests 3,000,000 seconds

Synchronous Results

833.3 hours

One request 0.003 seconds

One billion requests 3,000,000 seconds

Synchronous Results

833.3 hours
34.7 days

One request 0.003 seconds

One billion requests 3,000,000 seconds

Synchronous Results

Multithreading

Multithreading

List Files can't be parallelized.

queue.Queue But Get File can be parallelized.

Multithreading

List Files can't be parallelized.

queue.Queue But Get File can be parallelized.

Multithreading

List Files can't be parallelized.

One thread calls List Files and puts
the filenames on a queue.Queue

queue.Queue But Get File can be parallelized.

Multithreading

List Files can't be parallelized.

WorkerThread-1

WorkerThread-2

WorkerThread-3One thread calls List Files and puts
the filenames on a queue.Queue

queue.Queue But Get File can be parallelized.

Multithreading

List Files can't be parallelized.

WorkerThread-1

WorkerThread-2

WorkerThread-3One thread calls List Files and puts
the filenames on a queue.Queue

queue.Queue But Get File can be parallelized.

Multithreading

List Files can't be parallelized.

WorkerThread-1

WorkerThread-2

WorkerThread-3One thread calls List Files and puts
the filenames on a queue.Queue

queue.Queue But Get File can be parallelized.

Multithreading

List Files can't be parallelized.

WorkerThread-1

WorkerThread-2

WorkerThread-3One thread calls List Files and puts
the filenames on a queue.Queue

queue.Queue

Results Queue

Result thread prints progress, tracks
overall results, failures, etc.

def download_files(host, port, outdir, num_threads):
 # ... same constants as before ...

 work_queue = queue.Queue(MAX_SIZE)
 result_queue = queue.Queue(MAX_SIZE)

 threads = []
 for i in range(num_threads):
 t = threading.Thread(
 target=worker_thread, args=(work_queue, result_queue))
 t.start()
 threads.append(t)
 result_thread = threading.Thread(target=result_poller,
 args=(result_queue,))
 result_thread.start()
 threads.append(result_thread)

 # ...

 response = requests.get(list_url)

def download_files(host, port, outdir, num_threads):
 # ... same constants as before ...

 work_queue = queue.Queue(MAX_SIZE)
 result_queue = queue.Queue(MAX_SIZE)

 threads = []
 for i in range(num_threads):
 t = threading.Thread(
 target=worker_thread, args=(work_queue, result_queue))
 t.start()
 threads.append(t)
 result_thread = threading.Thread(target=result_poller,
 args=(result_queue,))
 result_thread.start()
 threads.append(result_thread)

 # ...

 response = requests.get(list_url)

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 outfile = os.path.join(outdir, filename)
 work_queue.put((remote_url, outfile))
 if 'NextFile' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextFile"]}')
 response.raise_for_status()
 content = json.loads(response.content)

 response = requests.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 for filename in content['FileNames']:
 remote_url = f'{get_url}/{filename}'
 outfile = os.path.join(outdir, filename)
 work_queue.put((remote_url, outfile))
 if 'NextFile' not in content:
 break
 response = requests.get(
 f'{list_url}?next-marker={content["NextFile"]}')
 response.raise_for_status()
 content = json.loads(response.content)

def worker_thread(work_queue, result_queue):
 while True:
 work = work_queue.get()
 if work is _SHUTDOWN:
 return
 remote_url, outfile = work
 download_file(remote_url, outfile)
 result_queue.put(_SUCCESS)

def worker_thread(work_queue, result_queue):
 while True:
 work = work_queue.get()
 if work is _SHUTDOWN:
 return
 remote_url, outfile = work
 download_file(remote_url, outfile)
 result_queue.put(_SUCCESS)

Multithreaded Results - 10 threads

One request 0.0036 seconds

Multithreaded Results - 10 threads

One request 0.0036 seconds

One billion requests 3,600,000 seconds
1000.0 hours

41.6 days

Multithreaded Results - 10 threads

Multithreaded Results - 100 threads

One request 0.0042 seconds

Multithreaded Results - 100 threads

One request 0.0042 seconds

One billion requests 4,200,000 seconds
1166.67 hours

48.6 days

Multithreaded Results - 100 threads

Why?

Not necessarily IO bound due to low latency and small file size

GIL contention, overhead of passing data through queues

Things to keep in mind

The real code is more complicated, ctrl-c, graceful shutdown, etc.

Debugging is much harder, non-deterministic

The more you stray from stdlib abstractions, more likely to encounter race conditions

Can't use concurrent.futures map() because of large number of files

Multiprocessing

Our Task (the details)

We have one machine we can use, 16 cores, 64GB memory

Our client machine is on the same network as the service with remote files

Approximately one billion files, 100 bytes per file

What client machine will this run on?

What about the network between the client and server?

How many files are on the remote server?

Please have this done as soon as possible

When do you need this done?

Multiprocessing

WorkerProcess-1

WorkerProcess-2

WorkerProcess-3Download one page at a time in
parallel across multiple processes

Multiprocessing

WorkerProcess-1

WorkerProcess-2

WorkerProcess-3Download one page at a time in
parallel across multiple processes

Multiprocessing

WorkerProcess-1

WorkerProcess-2

WorkerProcess-3Download one page at a time in
parallel across multiple processes

Multiprocessing

WorkerProcess-1

WorkerProcess-2

WorkerProcess-3Download one page at a time in
parallel across multiple processes

from concurrent import futures

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'

 all_pages = iter_all_pages(list_url)
 downloader = Downloader(host, port, outdir)
 with futures.ProcessPoolExecutor() as executor:
 for page in all_pages:
 future_to_filename = {}
 for filename in page:
 future = executor.submit(downloader.download,
 filename)
 future_to_filename[future] = filename
 for future in futures.as_completed(future_to_filename):
 future.result()

from concurrent import futures

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'

 all_pages = iter_all_pages(list_url)
 downloader = Downloader(host, port, outdir)
 with futures.ProcessPoolExecutor() as executor:
 for page in all_pages:
 future_to_filename = {}
 for filename in page:
 future = executor.submit(downloader.download,
 filename)
 future_to_filename[future] = filename
 for future in futures.as_completed(future_to_filename):
 future.result()

from concurrent import futures

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'

 all_pages = iter_all_pages(list_url)
 downloader = Downloader(host, port, outdir)
 with futures.ProcessPoolExecutor() as executor:
 for page in all_pages:
 future_to_filename = {}
 for filename in page:
 future = executor.submit(downloader.download,
 filename)
 future_to_filename[future] = filename
 for future in futures.as_completed(future_to_filename):
 future.result()

Start parallel downloads

from concurrent import futures

def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'

 all_pages = iter_all_pages(list_url)
 downloader = Downloader(host, port, outdir)
 with futures.ProcessPoolExecutor() as executor:
 for page in all_pages:
 future_to_filename = {}
 for filename in page:
 future = executor.submit(downloader.download,
 filename)
 future_to_filename[future] = filename
 for future in futures.as_completed(future_to_filename):
 future.result()

Wait for downloads to finish

def iter_all_pages(list_url):
 session = requests.Session()
 response = session.get(list_url)
 response.raise_for_status()
 content = json.loads(response.content)
 while True:
 yield content['FileNames']
 if 'NextFile' not in content:
 break
 response = session.get(
 f'{list_url}?next-marker={content["NextFile"]}')
 response.raise_for_status()
 content = json.loads(response.content)

class Downloader:
 # ...

 def download(self, filename):
 remote_url = f'{self.get_url}/{filename}'
 response = self.session.get(remote_url)
 response.raise_for_status()
 outfile = os.path.join(self.outdir, filename)
 with open(outfile, 'wb') as f:
 f.write(response.content)

Multiprocessing Results - 16 processes

One request 0.00032 seconds

Multiprocessing Results - 16 processes

One request 0.00032 seconds

One billion requests 320,000 seconds

88.88 hours

Multiprocessing Results - 16 processes

One request 0.00032 seconds

One billion requests 320,000 seconds

88.88 hours

Multiprocessing Results - 16 processes

3.7 days

Things to keep in mind

Speed improvements due to truly running in parallel

Debugging is much harder, non-deterministic, pdb doesn't work out of the box

IPC overhead between processes higher than threads

Tradeoff between entirely in parallel vs. parallel chunks

Asyncio

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

Asyncio

Create an asyncio.Task for each file.
This immediately starts the download.

Move on to the next page and start
creating tasks.

Meanwhile tasks from the first page
will finish downloading their file.

All in a single process

All in a single thread

Switch tasks when
waiting for IO

Should keep CPU busy

import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'
 semaphore = asyncio.Semaphore(MAX_CONCURRENT)
 task_queue = asyncio.Queue(MAX_SIZE)
 asyncio.create_task(results_worker(task_queue))
 async with ClientSession() as session:
 async for filename in iter_all_files(session, list_url):
 remote_url = f'{get_url}/{filename}'
 task = asyncio.create_task(
 download_file(session, semaphore, remote_url,
 os.path.join(outdir, filename))
)
 await task_queue.put(task)

import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'
 semaphore = asyncio.Semaphore(MAX_CONCURRENT)
 task_queue = asyncio.Queue(MAX_SIZE)
 asyncio.create_task(results_worker(task_queue))
 async with ClientSession() as session:
 async for filename in iter_all_files(session, list_url):
 remote_url = f'{get_url}/{filename}'
 task = asyncio.create_task(
 download_file(session, semaphore, remote_url,
 os.path.join(outdir, filename))
)
 await task_queue.put(task)

import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'
 semaphore = asyncio.Semaphore(MAX_CONCURRENT)
 task_queue = asyncio.Queue(MAX_SIZE)
 asyncio.create_task(results_worker(task_queue))
 async with ClientSession() as session:
 async for filename in iter_all_files(session, list_url):
 remote_url = f'{get_url}/{filename}'
 task = asyncio.create_task(
 download_file(session, semaphore, remote_url,
 os.path.join(outdir, filename))
)
 await task_queue.put(task)

import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'
 semaphore = asyncio.Semaphore(MAX_CONCURRENT)
 task_queue = asyncio.Queue(MAX_SIZE)
 asyncio.create_task(results_worker(task_queue))
 async with ClientSession() as session:
 async for filename in iter_all_files(session, list_url):
 remote_url = f'{get_url}/{filename}'
 task = asyncio.create_task(
 download_file(session, semaphore, remote_url,
 os.path.join(outdir, filename))
)
 await task_queue.put(task)

import asyncio
from aiohttp import ClientSession
import uvloop

async def download_files(host, port, outdir):
 hostname = f'http://{host}:{port}'
 list_url = f'{hostname}/list'
 get_url = f'{hostname}/get'
 semaphore = asyncio.Semaphore(MAX_CONCURRENT)
 task_queue = asyncio.Queue(MAX_SIZE)
 asyncio.create_task(results_worker(task_queue))
 async with ClientSession() as session:
 async for filename in iter_all_files(session, list_url):
 remote_url = f'{get_url}/{filename}'
 task = asyncio.create_task(
 download_file(session, semaphore, remote_url,
 os.path.join(outdir, filename))
)
 await task_queue.put(task)

async def iter_all_files(session, list_url):
 async with session.get(list_url) as response:
 if response.status != 200:
 raise RuntimeError(f"Bad status code: {response.status}")
 content = json.loads(await response.read())
 while True:
 for filename in content['FileNames']:
 yield filename
 if 'NextFile' not in content:
 return
 next_page_url = f'{list_url}?next-marker={content["NextFile"]}'
 async with session.get(next_page_url) as response:
 if response.status != 200:
 raise RuntimeError(f"Bad status code: {response.status}")
 content = json.loads(await response.read())

async def iter_all_files(session, list_url):
 async with session.get(list_url) as response:
 if response.status != 200:
 raise RuntimeError(f"Bad status code: {response.status}")
 content = json.loads(await response.read())
 while True:
 for filename in content['FileNames']:
 yield filename
 if 'NextFile' not in content:
 return
 next_page_url = f'{list_url}?next-marker={content["NextFile"]}'
 async with session.get(next_page_url) as response:
 if response.status != 200:
 raise RuntimeError(f"Bad status code: {response.status}")
 content = json.loads(await response.read())

async def download_file(session, semaphore, remote_url, local_filename):
 async with semaphore:
 async with session.get(remote_url) as response:
 contents = await response.read()
 # Sync version.
 with open(local_filename, 'wb') as f:
 f.write(contents)
 return local_filename

async def download_file(session, semaphore, remote_url, local_filename):
 async with semaphore:
 async with session.get(remote_url) as response:
 contents = await response.read()
 # Sync version.
 with open(local_filename, 'wb') as f:
 f.write(contents)
 return local_filename

Asyncio Results

One request 0.00056 seconds

Asyncio Results

One request 0.00056 seconds

One billion requests 560,000 seconds
155.55 hours

6.48 days

Asyncio Results

Summary
Approach Single	Request	Time	(s) Days

Synchronous 0.003 34.7

Multithread 0.0036 41.6

Multiprocess 0.00032 3.7

Asyncio 0.00056 6.5

Asyncio and
Multiprocessing

Asyncio and
Multiprocessing

and Multithreading

WorkerProcess-1

WorkerProcess-1

Thread-2

Thread-1

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

The Input/Output queues
contain pagination tokens

foo

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

The Input/Output queues
contain pagination tokens

foo

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

foo

The main thread of the worker process is
a bridge to the event loop running on a
separate thread. It sends the pagination
token to the async Queue.

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

foo

The event loop makes the List call
with the provided pagination token "foo".

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

foo

The event loop makes the List call
with the provided pagination token "foo".

{"FileNames": [...],
 "NextMarker": "bar"}

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

The next pagination token "bar", eventually
makes its way back to the main process.

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

The next pagination token "bar", eventually
makes its way back to the main process.

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

While another process starts goes through
the same steps, WorkerProcess-1 is
downloading 1000 files using asyncio.

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

We get to leverage all our cores.1.

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

We get to leverage all our cores.1.

We download individual files
efficiently with asyncio.

2.

WorkerProcess-1

EventLoop

Thread-2

Thread-1

Queue

WorkerProcess-2

EventLoop

Thread-2

Thread-1

Queue

Main process

Input Queue

Output Queue

bar	

We get to leverage all our cores.1.

We download individual files
efficiently with asyncio.

2.

Minimal IPC overhead, only passing
pagination tokens across processes, only

one per thousand files.

3.

Combo Results

One request 0.0000303 seconds

Combo Results

One request 0.0000303 seconds

One billion requests 30,300 seconds

Combo Results

One request 0.0000303 seconds

8.42 hours
One billion requests 30,300 seconds

Combo Results

Summary

Approach Single	Request	Time	(s) Days

Synchronous 0.003 34.7

Multithread 0.0036 41.6

Multiprocess 0.00032 3.7

Asyncio 0.00056 6.5

Combo 0.0000303 0.35

Tradeoff between simplicity and speed

Multiple orders of magnitude difference based on approach used

Lessons Learned

Need to have max bounds when using queueing or any task scheduling

Thanks!

J a m e s S a r y e r w i n n i e @ j s a r y e r

