
PEP yourself: 10 PEPs you
should pay attention to

Another look at known and lesser known PEPs

Juan Manuel Santos || godlike
EuroPython 2019 / 2019-07-12

Doctor who?

● Juan Manuel Santos.
● IRC: godlike.
● Twitter: godlike64.
● Principal Technical Support Engineer @ Red Hat.

● Linux.
● Python.

o/?

Why?
● Always liked standards.
● A way of moving things forward.

Why?
● Standards are a way of communication.
● Improve, refine, finalize an idea.
● Put it in a box.
● Share it with others.
● Improve some more.
● Seal and stamp the box.

How?
● I love Python but I am no Python expert superhero.
● I also love Open Source.
● …
● Wait!

How?

How?

What is a PEP?
● Python Enhancement Proposal.
● Design documents that provide information to the community.
● New features, processes, environment.

“We intend PEPs to be the primary mechanisms for proposing major new features,
for collecting community input on an issue, and for documenting the design
decisions that have gone into Python. The PEP author is responsible for building
consensus within the community and documenting dissenting opinions.”

Mandatory Monty Python reference

Why PEPs?
● Enhance Python.
● Implement new features.
● Better language → moar people!

General PEPs

PEP 8

PEP 8 -- Style Guide for Python Code
● Seed for this talk.
● Covers a lot of things on how to write your Python code:

○ Indentation.
○ Naming.
○ Imports.
○ Write code with other Python implementations in mind.

PEP 8 -- Style Guide for Python Code
● Line length.
● 79 characters max.

“Limiting the required editor window width makes it possible to have several files
open side-by-side, and works well when using code review tools that present the
two versions in adjacent columns.”

PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code
● Trey Hunner: “Craft Your Python Like Poetry.”

○ https://treyhunner.com/2017/07/craft-your-python-like-poetry/

● It is not a technical limitation.
● It is a human imposed limitation.
● Humans read shorter lines better (think newspapers).
● Python isn’t prose, it’s poetry.
● Craft it as such.

https://treyhunner.com/2017/07/craft-your-python-like-poetry/

PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP 257

PEP 257 -- Docstring Conventions
● “Working software over comprehensive documentation.”

PEP 257 -- Docstring Conventions
● “If you violate these conventions, the worst you'll get is some dirty looks.”

PEP 257 -- Docstring Conventions
● The __doc__ attribute.
● All modules, all exported functions and classes from a module, as well as all

public methods should have a docstring.
● Your docstring → actual docs!

PEP 257 -- Docstring Conventions

def kos_root():
 """Return the pathname of the KOS root directory."""
 global _kos_root
 if _kos_root: return _kos_root
 ...

PEP 257 -- Docstring Conventions

def complex(real=0.0, imag=0.0):
 """Form a complex number.

 Keyword arguments:
 real -- the real part (default 0.0)
 imag -- the imaginary part (default 0.0)
 """
 ...

PEP 257 -- Docstring Conventions

PEP 257 -- Docstring Conventions

PEP 257 -- Docstring Conventions

PEP 257 -- Docstring Conventions
● reStructuredText Docstring Format

○ https://www.python.org/dev/peps/pep-0287/

● Napoleon
○ https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

● Good programmers write code that humans can understand. — Martin
Fowler.

● If there’s something developers respect, it’s code. — Hynek Schlawack.

https://www.python.org/dev/peps/pep-0287/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

PEP 3099

PEP 3099 -- Things that will Not Change in Python
3000

“If you think you should suggest any of the listed ideas it would be better to just
step away from the computer, go outside, and enjoy yourself. Being active
outdoors by napping in a nice patch of grass is more productive than bringing up a
beating-a-dead-horse idea and having people tell you how dead the idea is.
Consider yourself warned.”

● Rationale always explained.
● Or link to long mailing list discussion

● pYtHoN wOn’T bE cAsE iNsEnSiTiVe

PEP 3099 -- Things that will Not Change in Python
3000

● Slices and extended slices are here to stay.
● Maximum line length will stay at 80 characters.

● “The interpreter prompt (>>>) will not change. It gives Guido warm fuzzy
feelings.”

PEP 3099 -- Things that will Not Change in Python
3000

Fun PEPs

PEP 202

PEP 202 -- List Comprehensions
● Generate lists in one line! No indentation required!
● Faster.
● Take an iterable → generate a list.

>>> print([i for i in range(10)])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

PEP 202 -- List Comprehensions
● Generate lists in one line! No indentation required!
● Faster.
● Take an iterable → generate a list.

>>> print()

PEP 202 -- List Comprehensions
● Generate lists in one line! No indentation required!
● Faster.
● Take an iterable → generate a list.

>>> print([])

PEP 202 -- List Comprehensions
● Generate lists in one line! No indentation required!
● Faster.
● Take an iterable → generate a list.

>>> print([for i in range(10)])

PEP 202 -- List Comprehensions
● Generate lists in one line! No indentation required!
● Faster.
● Take an iterable → generate a list.

>>> print([i for i in range(10)])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

PEP 202 -- List Comprehensions
● Can have filtering:

>>> print([i for i in range(20) if i%2 == 0])
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

● Or apply a transformation to all elements:

print([i if i%2 == 0 else 'odd' for i in range (20)])
[0, 'odd', 2, 'odd', 4, 'odd', 6, 'odd', 8, 'odd', 10,
'odd', 12, 'odd', 14, 'odd', 16, 'odd', 18, 'odd']

PEP 202 -- List Comprehensions
● More than one source iterable:

>>> nums = [1, 2, 3, 4]
>>> fruit = ["Apples", "Peaches", "Pears", "Bananas"]
>>> print([(i, f) for i in nums for f in fruit])
[(1, 'Apples'), (1, 'Peaches'), (1, 'Pears'), (1,
'Bananas'), (2, 'Apples'), (2, 'Peaches'), (2, 'Pears'), (2,
'Bananas'), (3, 'Apples'), (3, 'Peaches'), (3, 'Pears'), (3,
'Bananas'), (4, 'Apples'), (4, 'Peaches'), (4, 'Pears'), (4,
'Bananas')]

PEP 202 -- List Comprehensions
● There’s also a younger brother: dict comprehensions!

>>> print({i : chr(65+i) for i in range(4)})
{0: 'A', 1: 'B', 2: 'C', 3: 'D'}

PEP 202 -- List Comprehensions
● There’s also a younger brother: dict comprehensions!

>>> print({i : chr(65+i) for i in range(4)})
{0: 'A', 1: 'B', 2: 'C', 3: 'D'}

PEP 202 -- List Comprehensions
● There’s also a younger brother: dict comprehensions!

>>> print({i : chr(65+i) for i in range(4)})
{0: 'A', 1: 'B', 2: 'C', 3: 'D'}

PEP 234

PEP 234 -- Iterators
● Controlled for loops.

1. A method produces an iterator object.
2. The iterator object provides a next() method.
3. next() will return one element at a time, until no more elements are available.
4. StopIteration.

PEP 234 -- Iterators
● Iteration interface already implemented in all for loops.
● This allows:

for line in file:
 ...

● And also:

for k in dict:
 ...

PEP 234 -- Iterators
● Infinite collection:

PEP 255

PEP 255 -- Simple Generators
● Resumable functions.
● Introduces the yield statement.
● Makes use of the iterator protocol.

○ Call next().
○ Run until yield.
○ Freeze execution, return control to the caller.
○ Retains local state!

PEP 255 -- Simple Generators

def fib():
 a, b = 0, 1
 while 1:
 yield b
 a, b = b, a+b

PEP 255 -- Simple Generators

PEP 255 -- Simple Generators
● Fun with Iterators and Generators - Malcolm Tredinnick

○ https://www.youtube.com/watch?v=vD-JJD5tlIg

https://www.youtube.com/watch?v=vD-JJD5tlIg

PEP 498

PEP 498 -- Literal String Interpolation
● The one true way of doing strings in Python 3.6+.

PEP 498 -- Literal String Interpolation
● Why? Before f-strings came along we had:

○ %-formatting:

>>> msg = 'disk failure'
>>> 'error: %s' % msg
'error: disk failure'

○ str.format():

>>> value = 4 * 20
>>> 'The value is {value}.'.format(value=value)
'The value is 80.'

PEP 498 -- Literal String Interpolation
● Why? Before f-strings came along we had:

PEP 498 -- Literal String Interpolation
● Why? Before f-strings came along we had:

○ Concatenation with +:

>>> value = 'HORRIBLE'
>>> 'The value is ' + value
'The value is HORRIBLE'

PEP 498 -- Literal String Interpolation

PEP 498 -- Literal String Interpolation
● Simply, prepend f:

>>> f'Hello world!'
'Hello world!'

● Use braces to insert any variable:

>>> name = 'world'
>>> f'Hello {name}!'
'Hello world!'

PEP 498 -- Literal String Interpolation
● … or just about any Python expression that you feel like inserting:

>>> import math
>>> f'The square root of 500 is {math.sqrt(500)}'
'The square root of 500 is 22.360679774997898'

PEP 498 -- Literal String Interpolation
● … or just about any Python expression that you feel like inserting:

PEP 498 -- Literal String Interpolation
● … or just about any Python expression that you feel like inserting:

>>> f'One hundred digits of pi: {math.pi:.100f}'
'One hundred digits of pi:
3.141592653589793115997963468544185161590576171875000000000000000000000000000000000000
0000000000000000'
>>>

PEP 498 -- Literal String Interpolation
● Cannot be used in docstrings.
● Cannot be used with gettext().

Advanced PEPs

PEP 484

PEP 484 -- Type Hints
“Python will remain a dynamically typed language, and the authors have no desire
to ever make type hints mandatory, even by convention.”

● Enables static analysis.
● Some day, runtime type-checking (optional, not enforced!).
● Also useful for documentation purposes.

PEP 484 -- Type Hints
● Makes use of PEP 3107-style annotations:

def greeting(name: str) -> str:
 return 'Hello ' + name

PEP 484 -- Type Hints
● Also, type aliases:

from typing import TypeVar, Iterable, Tuple

T = TypeVar('T', int, float, complex)
Vector = Iterable[Tuple[T, T]]

def inproduct(v: Vector[T]) -> T:
 return sum(x*y for x, y in v)
def dilate(v: Vector[T], scale: T) -> Vector[T]:
 return ((x * scale, y * scale) for x, y in v)
vec = [] # type: Vector[float]

PEP 557

PEP 557 -- Data Classes
“Mutable namedtuples with defaults.”

● Define class attributes and types.
● Generates __init__, __repr__, comparison methods.

PEP 557 -- Data Classes
@dataclass
class InventoryItem:
 '''Class for keeping track of an item in inventory.'''
 name: str
 unit_price: float
 quantity_on_hand: int = 0

 def total_cost(self) -> float:
 return self.unit_price * self.quantity_on_hand

PEP 557 -- Data Classes
def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0) -> None:
 self.name = name
 self.unit_price = unit_price
 self.quantity_on_hand = quantity_on_hand

def __repr__(self):
 return f'InventoryItem(name={self.name!r}, unit_price={self.unit_price!r},
quantity_on_hand={self.quantity_on_hand!r})'

def __eq__(self, other):
 if other.__class__ is self.__class__:
 return (self.name, self.unit_price, self.quantity_on_hand) == (other.name,
other.unit_price, other.quantity_on_hand)
 return NotImplemented

PEP 557 -- Data Classes
def __ne__(self, other):
 if other.__class__ is self.__class__:
 return (self.name, self.unit_price, self.quantity_on_hand) != (other.name,
other.unit_price, other.quantity_on_hand)
 return NotImplemented

def __lt__(self, other):
 if other.__class__ is self.__class__:
 return (self.name, self.unit_price, self.quantity_on_hand) < (other.name,
other.unit_price, other.quantity_on_hand)
 return NotImplemented

def __le__(self, other):
 if other.__class__ is self.__class__:
 return (self.name, self.unit_price, self.quantity_on_hand) <= (other.name,
other.unit_price, other.quantity_on_hand)
 return NotImplemented

PEP 557 -- Data Classes

def __gt__(self, other):
 if other.__class__ is self.__class__:
 return (self.name, self.unit_price, self.quantity_on_hand) > (other.name,
other.unit_price, other.quantity_on_hand)
 return NotImplemented

def __ge__(self, other):
 if other.__class__ is self.__class__:
 return (self.name, self.unit_price, self.quantity_on_hand) >= (other.name,
other.unit_price, other.quantity_on_hand)
 return NotImplemented

PEP 557 -- Data Classes
● Saves a lot of boilerplate code.
● Does not replace attrs.

○ Validation.
○ Converters.
○ Slotted classes.
○ Moar.

● Flavio Curella: “Dataclasses and attrs: when and why.”
○ https://www.revsys.com/tidbits/dataclasses-and-attrs-when-and-why/

https://www.revsys.com/tidbits/dataclasses-and-attrs-when-and-why/

PEP 572

PEP 572 -- Assignment Expressions
● Name the result of an expression → allows reuse!

● Programmers value writing fewer lines of code over shorter (but possibly
indented) lines.

○ Coincidentally, comprehensions ^.

PEP 572 -- Assignment Expressions
name := expression

PEP 572 -- Assignment Expressions
● Those ‘if <something> is not None’:

match = pattern.search(data)
if match is not None:
 # Do something with match

● Now turn into:

if (match := pattern.search(data)) is not None:
 # Do something with match

PEP 572 -- Assignment Expressions
● Usage with any() or all():

if any((comment := line).startswith('#') for line in lines):
 print("First comment:", comment)
else:
 print("There are no comments")

● Or in a comprehension:

total = 0
partial_sums = [total := total + v for v in values]
print("Total:", total)

PEP 572 -- Assignment Expressions
● Examples from Python’s standard library:

○ site.py changed this:

env_base = os.environ.get("PYTHONUSERBASE", None)
if env_base:
 return env_base

Into this:

if env_base := os.environ.get("PYTHONUSERBASE", None):
 return env_base

PEP 572 -- Assignment Expressions
● Examples from Python’s standard library:

○ copy.py changed this:

reductor = dispatch_table.get(cls)
if reductor:
 rv = reductor(x)
else:
 reductor = getattr(x, "__reduce_ex__", None)
 if reductor:
 rv = reductor(4)
 else:
 reductor = getattr(x, "__reduce__", None)
 if reductor:
 rv = reductor()
 else:
 raise Error(
 "un(deep)copyable object of type %s" % cls)

PEP 572 -- Assignment Expressions
● Examples from Python’s standard library:

○ Into this:

if reductor := dispatch_table.get(cls):
 rv = reductor(x)
elif reductor := getattr(x, "__reduce_ex__", None):
 rv = reductor(4)
elif reductor := getattr(x, "__reduce__", None):
 rv = reductor()
else:
 raise Error("un(deep)copyable object of type %s" % cls)

PEP 572 -- Assignment Expressions
● Less indentation.
● Less lines.
● Happy programmer.

Thank you!

