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Is it me, or the GIL?
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• Quality assurance for SAP HANA

• Automated testing of ~800 commits per day

• Mainly testing with physical hardware: ~1600 machines, 610 TB RAM (256 GB – 8TB)

• Development of optimized tools and services

Background
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Assumption: Thread released 
GIL multiple times and had to 
wait for re-acquire
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Python’s ecosystem offers various ways:
• multithreading => asyncio
• multithreading => multiprocessing (+ asyncio)
• CPU-intensive functions => Cython without the GIL
• Python => $faster language
• …

But, Rewriting and major refactoring are expensive
• Verify the assumption and measure GIL contention
• Decide about solution based on collected metrics instead of intuition

Mitigate GIL contention
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$ python3.7
Python 3.7.1 (default, Oct 22 2018, 13:16:18) [GCC] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.get_gil_stats()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: module 'sys' has no attribute 'get_gil_stats’

Look at the GIL
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• Provides metrics about GIL contention
• wait time
• hold time

• Additional context
• Thread identifier/name
• Python/C-Function
• Trace/Request Id

• Usable for productive environments
• Low overhead
• Dynamically attachable to running Python processes

• Integration into existing observability stack

Wish list
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A Zoomable Interactive Python Thread Visualization by Dave Beazley

• Understanding the Python GIL (PyCon 2010)

• Adjustments in CPython 2.6 to store events about the GIL

Related work and instrumentation approaches

http://www.dabeaz.com/GIL/gilvis/index.html
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Thread Concurrency Visualization by PyCharm

• Visualizes and reveals locking issues but omits GIL

Related work and instrumentation approaches

https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
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gil_load by Chris Billington

• Statistical profiler based on sampling states of all python threads every 50ms

• Installable python package (not Python 3.7 compatible yet)

Related work and instrumentation approaches

$ python example_two.py
[2019-06-21 23:23:20] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:21] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:23] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:23] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:25] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:26] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:27] GIL load: 1.00 (1.00, 1.00, 1.00)

https://github.com/chrisjbillington/gil_load
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py-spy by Ben Frederickson

• Promising sampling profiler in 
Rust for Python applications

• Includes GIL utilization metric but 
no breakdown into usage per 
thread

Related work and instrumentation approaches

https://github.com/benfred/py-spy
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“There is no magic GIL 
performance analysis tool”

a sad Python developer



17PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

• Base: SystemTap

• Analyze Linux applications by attaching handlers to events

• CPython 3.6 introduced DTrace/SystemTap support & markers
• function__entry
• function__return
• Great documentation: Instrumenting CPython with DTrace and SystemTap

• Pre-build Linux packages often compiled without: --with-dtrace

• No GIL related markers

Creating a tool that reveals the GIL

https://docs.python.org/3/howto/instrumentation.html
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diff --git a/Python/ceval_gil.h b/Python/ceval_gil.h
index ef5189068e..aecd3c99aa 100644
@@ static void drop_gil(PyThreadState *tstate)

MUTEX_LOCK(_PyRuntime.ceval.gil.mutex);
_Py_atomic_store_relaxed(&_PyRuntime.ceval.gil.locked, 0);

+ if (PyDTrace_GIL_DROP_ENABLED())
+ PyDTrace_GIL_DROP(PyThread_get_thread_ident());
+

COND_SIGNAL(_PyRuntime.ceval.gil.cond);
MUTEX_UNLOCK(_PyRuntime.ceval.gil.mutex);

@@ static void take_gil(PyThreadState *tstate)
if (tstate == NULL)

Py_FatalError("take_gil: NULL tstate");

+ if (PyDTrace_GIL_CLAIM_ENABLED())
+ PyDTrace_GIL_CLAIM(PyThread_get_thread_ident());
+

err = errno;
MUTEX_LOCK(_PyRuntime.ceval.gil.mutex);

Adding SystemTap markers about the GIL

Only thread identifiers as 
argument as there is currently 

no C API for accessing user-
defined thread name
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• Attach probes (event handlers) to 
GIL markers

• Calculate timing of transitions
• claim - acquired - drop

• Store measurements  in 
SystemTap statistical aggregate 
type per thread

probe process("libpython3.7m.so.1.0").mark("gil_claim") {
last_timestamp[$arg1] = gettimeofday_ns();

}

probe process("libpython3.7m.so.1.0").mark("gil_acquired") {
wait_time_ns = gettimeofday_ns() - last_timestamp[$arg1];
gil_wait_aggregate[$arg1] <<< wait_time_ns;
last_timestamp[$arg1] = gettimeofday_ns();

}

probe process("libpython3.7m.so.1.0").mark("gil_drop") {
hold_time_ns = gettimeofday_ns() - last_timestamp[$arg1];
gil_hold_aggregate[$arg1] <<< hold_time_ns;

}

Measure time between GIL markers
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• Handlers for start and end of
tracing session

• Report GIL wait and hold time as 
sum and histogram

probe begin {println("Start tracing of Python GIL probes")}

probe end {
println("Terminate tracing")
println("Summary (all time measurements in ns)")
foreach (thread in gil_wait_aggregate) {

printf("Python Thread %d\n", thread)
printf(

"Aggregated GIL wait time: %d\n",
@sum(gil_wait_aggregate[thread])

)
printf(

"Aggregated GIL hold time: %d\n",
@sum(gil_hold_aggregate[thread])

)
printf("GIL wait latency\n")
println(@hist_log(gil_wait_aggregate[thread]))
printf("GIL hold time\n")
println(@hist_log(gil_hold_aggregate[thread]))

}
}

Produce summary of collected data
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Summary (all time measurements in ns)
Python Thread 140604373862144
Aggregated GIL wait time: 1102539
Aggregated GIL hold time: 27794967

Python Thread 140604351805184
Aggregated GIL wait time: 452269
Aggregated GIL hold time: 1490119

Python Thread 140604343412480
Aggregated GIL wait time: 462690
Aggregated GIL hold time: 1382457

def io_work(n=150):
while n > 0:

n -= 1
time.sleep(0.1)

def main():
io1 = Thread(name='io1', target=io_work)
io2 = Thread(name='io2', target=io_work)

io1.start()
io2.start()
io1.join()
io2.join()

Experiment 1: Process with 2 IO-bound threads

App. runtime:  15064.3ms
GIL Hold time:    29.7ms 0.20% of runtime
GIL Wait time:     1.9ms 0.01% of runtime

# MainThread
# 1.10ms
# 27.79ms

# io1
# 0.45ms
# 1.49ms

# io2
# 0.46ms
# 1.38ms
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Summary (all time measurements in ns)
Python Thread 140347214374656
Aggregated GIL wait time: 45613707
Aggregated GIL hold time: 28039210

Python Thread 140347192317696
Aggregated GIL wait time: 760017132
Aggregated GIL hold time: 2109572

Python Thread 140347116091136
Aggregated GIL wait time: 770118858
Aggregated GIL hold time: 1504611

Python Thread 140347107698432
Aggregated GIL wait time: 3816216
Aggregated GIL hold time: 15790884948

def io_work(n=150):
while n > 0:

n -= 1
time.sleep(0.1)

def cpu_spin():
while True:

pass

def main():
io1 = Thread(name='io1', target=io_work)
io2 = Thread(name='io2', target=io_work)
cpu1 = Thread(

name='cpu1', target=cpu_spin, daemon=True
)

...

Experiment 2: CPU-bound thread

App. runtime:  15822ms
GIL hold time: 15821ms 99.99% of runtime
GIL wait time:  1578ms  9.97% of runtime

# MainThread
# 45.61ms
# 28.04ms

# io1
# 760.02ms
# 2.11ms

# io2
# 770.01ms
# 1.50ms

# cpu1
# 3.81ms
# 15790.88ms
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Python Thread 140347116091136 # io2
GIL wait latency

value |-------------------------------------------------- count
512 | 0

1024 | 0
2048 | 1
4096 | 0
8192 | 0

~
1048576 | 0
2097152 | 0
4194304 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 149
8388608 | 1

16777216 | 0
33554432 | 0

GIL hold time
value |-------------------------------------------------- count
1024 | 0
2048 | 0
4096 |@@@@@@@@@@@ 34
8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 115

16384 | 0
32768 | 1
65536 | 1

Python Thread 140347192317696 # io1
GIL wait latency

value |-------------------------------------------------- count
512 | 0

1024 | 0
2048 | 1
4096 | 0
8192 | 0

~
1048576 | 0
2097152 | 0
4194304 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 150
8388608 | 0

16777216 | 0

GIL hold time
value |-------------------------------------------------- count
1024 | 0
2048 | 0
4096 |@@@@@@@@@@@@@@ 42
8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 103

16384 | 1
32768 | 2
65536 | 2

131072 | 0
262144 | 1

Experiment 2: GIL wait latency for IO threads

Stable wait latency between 4 – 8ms
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Experiment 2: Evaluation

>>> import sys
>>> sys.getswitchinterval()
0.005

• switchinterval defines the grace period before a waiting thread requests GIL drop

• GIL-holding thread may keep the GIL longer due to
• long-running bytecode operation
• external C function

• GIL contention affects overall application performance
• Additional 5ms latency on each GIL acquire attempt after one blocking IO operation
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• Plan
• Deploy container with customized CPython and SystemTap
• Attach to process
• Get clear and precise insides about GIL contention

• Relativity
• Deploy container with customized CPython
• Install SystemTap on host with kernel sources, compiler toolchain etc.
• Copy libpython3.7m.so.1.0 from container into host filesystem
• Attach to process = Load custom kernel extension with your systemtap handlers
• Get huge text file with report

Analyze production application with SystemTap
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Result: Analysis of productive task scheduler

Observation period:   120091.89ms
GIL hold time: 105680.91ms   88.00% of timeframe
GIL wait time:  352997.64ms  293.94% of timeframe

• Proved, our application suffers from GIL contention

• More questions:
• Are there threads that hold the GIL longer than 5ms?
• If yes, which functions are so expensive?
• Is it possible to identify time-based patterns with higher contention?

• Problem: With 31 threads the text report isn’t well understandable
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Timelines are easier to understand
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…

API call

Service #1: process request

API call

Service #1: process request

30ms

30ms



28PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Replace text report with some colorful charts

Collect and store data with SystemTap

Load data into Jupyter notebook

Transform data

Visualize data with Bokeh
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metrics-collector

80075.77ms (75.77%)

Distribution of GIL hold time
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• Started replacing of an expensive C-Extension that doesn’t release the GIL

• Increased sleep time of metrics-collector thread from 10sec to 120sec

Fixing our GIL contention

Before:
Observation period:   120091.89ms
GIL hold time: 105680.91ms   88.00% of timeframe
GIL wait time:  352997.64ms  293.94% of timeframe

After:
Observation period: 300112.84ms
GIL hold time: 130806.91ms 43.59% of timeframe
GIL wait time: 240568.60ms     80.16% of timeframe

• Without major refactoring the system is now able to utilize all available resources

• Collected data will helps us to decide about coming architectural changes
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• Bring toolset (systemtap script & visualization) in a public usable state

• Enhance CPython for data collection with SystemTap
• Integrate GIL markers into CPython
• C API for thread names

• Maybe collect and provide GIL metrics directly with CPython
• sys.get_gil_stats()
• Easier integration into existing observability tooling like distributed tracing
• No need to compile custom kernel extensions in your productive environment

• If you are also interested in that area, let’s talk!

Many additional ideas



Christoph Heer

christoph.heer@sap.com
@ChristophHeer

Thank you.

mailto:christoph.heer@sap.com
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