
Christoph Heer
EuroPython 2019 – 10.07.2019

Is it me, or the GIL?

2PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Quality assurance for SAP HANA

• Automated testing of ~800 commits per day

• Mainly testing with physical hardware: ~1600 machines, 610 TB RAM (256 GB – 8TB)

• Development of optimized tools and services

Background

3PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Apache Mesos

Physical Machine Physical Machine Physical Machine Physical Machine Compute Instance Compute Instance

Datacenter #1 Datacenter #2 Cloud Provider #1

DBService #1 Service #2

Test
Scheduling

resource offers &
status messages task definitions

Task Scheduler

pymesos thread

status update
thread #1..N

offer handling
thread

metrics
thread

HTTP thread
#1..N

sentry
thread

jaeger
thread

log shipping
thread

shared data structures like queues etc.

Task Scheduler

Observability
Stack

Physical Machine Physical Machine Physical Machine Physical Machine Compute Instance Compute Instance

4PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Inspect offer handling thread

724.09msselect offer for task

prepare task

select offer for task

select offer for task

551.02ms

32.21ms

200ms

186ms

292.08ms

…

…

API call

Service #1: process request

API call

Service #1: process request

30ms

30ms

5PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Inspect offer handling thread

724.09msselect offer for task

prepare task

select offer for task

select offer for task

551.02ms

32.21ms

200ms

186ms

292.08ms

…

…

API call

Service #1: process request

API call

Service #1: process request

30ms

30ms

Observations
• Different function runtimes

6PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Inspect offer handling thread

724.09msselect offer for task

prepare task

select offer for task

select offer for task

551.02ms

32.21ms

200ms

186ms

292.08ms

…

…

API call

Service #1: process request

API call

Service #1: process request

30ms

30ms

Observations
• Different function runtimes
• Increased latency

7PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Inspect offer handling thread

724.09msselect offer for task

prepare task

select offer for task

select offer for task

551.02ms

32.21ms

200ms

186ms

292.08ms

…

…

API call

Service #1: process request

API call

Service #1: process request

30ms

30ms

Observations
• Different function runtimes
• Increased latency
• Gaps between operations

8PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Inspect offer handling thread

724.09msselect offer for task

prepare task

select offer for task

select offer for task

551.02ms

32.21ms

200ms

186ms

292.08ms

…

…

API call

Service #1: process request

API call

Service #1: process request

30ms

30ms

Observations
• Different function runtimes
• Increased latency
• Gaps between operations
Assumption: Thread released
GIL multiple times and had to
wait for re-acquire

9PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Python’s ecosystem offers various ways:
• multithreading => asyncio
• multithreading => multiprocessing (+ asyncio)
• CPU-intensive functions => Cython without the GIL
• Python => $faster language
• …

But, Rewriting and major refactoring are expensive
• Verify the assumption and measure GIL contention
• Decide about solution based on collected metrics instead of intuition

Mitigate GIL contention

10PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

$ python3.7
Python 3.7.1 (default, Oct 22 2018, 13:16:18) [GCC] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.get_gil_stats()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: module 'sys' has no attribute 'get_gil_stats’

Look at the GIL

11PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Provides metrics about GIL contention
• wait time
• hold time

• Additional context
• Thread identifier/name
• Python/C-Function
• Trace/Request Id

• Usable for productive environments
• Low overhead
• Dynamically attachable to running Python processes

• Integration into existing observability stack

Wish list

12PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

A Zoomable Interactive Python Thread Visualization by Dave Beazley

• Understanding the Python GIL (PyCon 2010)

• Adjustments in CPython 2.6 to store events about the GIL

Related work and instrumentation approaches

http://www.dabeaz.com/GIL/gilvis/index.html

13PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Thread Concurrency Visualization by PyCharm

• Visualizes and reveals locking issues but omits GIL

Related work and instrumentation approaches

https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html

14PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

gil_load by Chris Billington

• Statistical profiler based on sampling states of all python threads every 50ms

• Installable python package (not Python 3.7 compatible yet)

Related work and instrumentation approaches

$ python example_two.py
[2019-06-21 23:23:20] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:21] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:23] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:23] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:25] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:26] GIL load: 1.00 (1.00, 1.00, 1.00)
[2019-06-21 23:23:27] GIL load: 1.00 (1.00, 1.00, 1.00)

https://github.com/chrisjbillington/gil_load

15PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

py-spy by Ben Frederickson

• Promising sampling profiler in
Rust for Python applications

• Includes GIL utilization metric but
no breakdown into usage per
thread

Related work and instrumentation approaches

https://github.com/benfred/py-spy

16PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

“There is no magic GIL
performance analysis tool”

a sad Python developer

17PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Base: SystemTap

• Analyze Linux applications by attaching handlers to events

• CPython 3.6 introduced DTrace/SystemTap support & markers
• function__entry
• function__return
• Great documentation: Instrumenting CPython with DTrace and SystemTap

• Pre-build Linux packages often compiled without: --with-dtrace

• No GIL related markers

Creating a tool that reveals the GIL

https://docs.python.org/3/howto/instrumentation.html

18PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

diff --git a/Python/ceval_gil.h b/Python/ceval_gil.h
index ef5189068e..aecd3c99aa 100644
@@ static void drop_gil(PyThreadState *tstate)

MUTEX_LOCK(_PyRuntime.ceval.gil.mutex);
_Py_atomic_store_relaxed(&_PyRuntime.ceval.gil.locked, 0);

+ if (PyDTrace_GIL_DROP_ENABLED())
+ PyDTrace_GIL_DROP(PyThread_get_thread_ident());
+

COND_SIGNAL(_PyRuntime.ceval.gil.cond);
MUTEX_UNLOCK(_PyRuntime.ceval.gil.mutex);

@@ static void take_gil(PyThreadState *tstate)
if (tstate == NULL)

Py_FatalError("take_gil: NULL tstate");

+ if (PyDTrace_GIL_CLAIM_ENABLED())
+ PyDTrace_GIL_CLAIM(PyThread_get_thread_ident());
+

err = errno;
MUTEX_LOCK(_PyRuntime.ceval.gil.mutex);

Adding SystemTap markers about the GIL

Only thread identifiers as
argument as there is currently

no C API for accessing user-
defined thread name

19PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Attach probes (event handlers) to
GIL markers

• Calculate timing of transitions
• claim - acquired - drop

• Store measurements in
SystemTap statistical aggregate
type per thread

probe process("libpython3.7m.so.1.0").mark("gil_claim") {
last_timestamp[$arg1] = gettimeofday_ns();

}

probe process("libpython3.7m.so.1.0").mark("gil_acquired") {
wait_time_ns = gettimeofday_ns() - last_timestamp[$arg1];
gil_wait_aggregate[$arg1] <<< wait_time_ns;
last_timestamp[$arg1] = gettimeofday_ns();

}

probe process("libpython3.7m.so.1.0").mark("gil_drop") {
hold_time_ns = gettimeofday_ns() - last_timestamp[$arg1];
gil_hold_aggregate[$arg1] <<< hold_time_ns;

}

Measure time between GIL markers

20PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Handlers for start and end of
tracing session

• Report GIL wait and hold time as
sum and histogram

probe begin {println("Start tracing of Python GIL probes")}

probe end {
println("Terminate tracing")
println("Summary (all time measurements in ns)")
foreach (thread in gil_wait_aggregate) {

printf("Python Thread %d\n", thread)
printf(

"Aggregated GIL wait time: %d\n",
@sum(gil_wait_aggregate[thread])

)
printf(

"Aggregated GIL hold time: %d\n",
@sum(gil_hold_aggregate[thread])

)
printf("GIL wait latency\n")
println(@hist_log(gil_wait_aggregate[thread]))
printf("GIL hold time\n")
println(@hist_log(gil_hold_aggregate[thread]))

}
}

Produce summary of collected data

21PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Summary (all time measurements in ns)
Python Thread 140604373862144
Aggregated GIL wait time: 1102539
Aggregated GIL hold time: 27794967

Python Thread 140604351805184
Aggregated GIL wait time: 452269
Aggregated GIL hold time: 1490119

Python Thread 140604343412480
Aggregated GIL wait time: 462690
Aggregated GIL hold time: 1382457

def io_work(n=150):
while n > 0:

n -= 1
time.sleep(0.1)

def main():
io1 = Thread(name='io1', target=io_work)
io2 = Thread(name='io2', target=io_work)

io1.start()
io2.start()
io1.join()
io2.join()

Experiment 1: Process with 2 IO-bound threads

App. runtime: 15064.3ms
GIL Hold time: 29.7ms 0.20% of runtime
GIL Wait time: 1.9ms 0.01% of runtime

MainThread
1.10ms
27.79ms

io1
0.45ms
1.49ms

io2
0.46ms
1.38ms

22PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Summary (all time measurements in ns)
Python Thread 140347214374656
Aggregated GIL wait time: 45613707
Aggregated GIL hold time: 28039210

Python Thread 140347192317696
Aggregated GIL wait time: 760017132
Aggregated GIL hold time: 2109572

Python Thread 140347116091136
Aggregated GIL wait time: 770118858
Aggregated GIL hold time: 1504611

Python Thread 140347107698432
Aggregated GIL wait time: 3816216
Aggregated GIL hold time: 15790884948

def io_work(n=150):
while n > 0:

n -= 1
time.sleep(0.1)

def cpu_spin():
while True:

pass

def main():
io1 = Thread(name='io1', target=io_work)
io2 = Thread(name='io2', target=io_work)
cpu1 = Thread(

name='cpu1', target=cpu_spin, daemon=True
)

...

Experiment 2: CPU-bound thread

App. runtime: 15822ms
GIL hold time: 15821ms 99.99% of runtime
GIL wait time: 1578ms 9.97% of runtime

MainThread
45.61ms
28.04ms

io1
760.02ms
2.11ms

io2
770.01ms
1.50ms

cpu1
3.81ms
15790.88ms

23PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Python Thread 140347116091136 # io2
GIL wait latency

value |-- count
512 | 0

1024 | 0
2048 | 1
4096 | 0
8192 | 0

~
1048576 | 0
2097152 | 0
4194304 |@@@ 149
8388608 | 1

16777216 | 0
33554432 | 0

GIL hold time
value |-- count
1024 | 0
2048 | 0
4096 |@@@@@@@@@@@ 34
8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 115

16384 | 0
32768 | 1
65536 | 1

Python Thread 140347192317696 # io1
GIL wait latency

value |-- count
512 | 0

1024 | 0
2048 | 1
4096 | 0
8192 | 0

~
1048576 | 0
2097152 | 0
4194304 |@@ 150
8388608 | 0

16777216 | 0

GIL hold time
value |-- count
1024 | 0
2048 | 0
4096 |@@@@@@@@@@@@@@ 42
8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 103

16384 | 1
32768 | 2
65536 | 2

131072 | 0
262144 | 1

Experiment 2: GIL wait latency for IO threads

Stable wait latency between 4 – 8ms

24PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Experiment 2: Evaluation

>>> import sys
>>> sys.getswitchinterval()
0.005

• switchinterval defines the grace period before a waiting thread requests GIL drop

• GIL-holding thread may keep the GIL longer due to
• long-running bytecode operation
• external C function

• GIL contention affects overall application performance
• Additional 5ms latency on each GIL acquire attempt after one blocking IO operation

25PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Plan
• Deploy container with customized CPython and SystemTap
• Attach to process
• Get clear and precise insides about GIL contention

• Relativity
• Deploy container with customized CPython
• Install SystemTap on host with kernel sources, compiler toolchain etc.
• Copy libpython3.7m.so.1.0 from container into host filesystem
• Attach to process = Load custom kernel extension with your systemtap handlers
• Get huge text file with report

Analyze production application with SystemTap

26PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Result: Analysis of productive task scheduler

Observation period: 120091.89ms
GIL hold time: 105680.91ms 88.00% of timeframe
GIL wait time: 352997.64ms 293.94% of timeframe

• Proved, our application suffers from GIL contention

• More questions:
• Are there threads that hold the GIL longer than 5ms?
• If yes, which functions are so expensive?
• Is it possible to identify time-based patterns with higher contention?

• Problem: With 31 threads the text report isn’t well understandable

27PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Timelines are easier to understand

724.09msselect offer for task

prepare task

select offer for task

select offer for task

551.02ms

32.21ms

200ms

186ms

292.08ms

…

…

API call

Service #1: process request

API call

Service #1: process request

30ms

30ms

28PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Replace text report with some colorful charts

Collect and store data with SystemTap

Load data into Jupyter notebook

Transform data

Visualize data with Bokeh

29PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

30PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

31PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

32PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

33PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

metrics-collector

80075.77ms (75.77%)

Distribution of GIL hold time

34PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Started replacing of an expensive C-Extension that doesn’t release the GIL

• Increased sleep time of metrics-collector thread from 10sec to 120sec

Fixing our GIL contention

Before:
Observation period: 120091.89ms
GIL hold time: 105680.91ms 88.00% of timeframe
GIL wait time: 352997.64ms 293.94% of timeframe

After:
Observation period: 300112.84ms
GIL hold time: 130806.91ms 43.59% of timeframe
GIL wait time: 240568.60ms 80.16% of timeframe

• Without major refactoring the system is now able to utilize all available resources

• Collected data will helps us to decide about coming architectural changes

35PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Bring toolset (systemtap script & visualization) in a public usable state

• Enhance CPython for data collection with SystemTap
• Integrate GIL markers into CPython
• C API for thread names

• Maybe collect and provide GIL metrics directly with CPython
• sys.get_gil_stats()
• Easier integration into existing observability tooling like distributed tracing
• No need to compile custom kernel extensions in your productive environment

• If you are also interested in that area, let’s talk!

Many additional ideas

Christoph Heer

christoph.heer@sap.com
@ChristophHeer

Thank you.

mailto:christoph.heer@sap.com

37PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

This presentation is licensed to the public under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

The information contained herein may be changed without prior notice. Some software products marketed by SAP SE and its
distributors contain proprietary software components of other software vendors. National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or
warranty of any kind, and SAP or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The
only warranties for SAP or SAP affiliate company products and services are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any
related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP
SE’s or its affiliated companies’ strategy and possible future developments, products, and/or platform directions and functionality are
all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The
information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All
forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from
expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, and they should not be relied
upon in making purchasing decisions.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks
of SAP SE (or an SAP affiliate company) in Germany and other countries. All other product and service names mentioned are the
trademarks of their respective companies.
See http://global.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

© 2019 SAP SE or an SAP affiliate company.

http://global.sap.com/corporate-en/legal/copyright/index.epx

