
The Secret Life of Software

Rediscover Your Production System

The Secret Life of Software

Rediscover Your Production System

$ whoami

What is your code doing?

Complexity

We are building more complex systems than ever before.

It is rare to find a system consisting of "just" a webserver and
database.

You'll likely have

Multiple Web Servers and proxies

You'll likely have

Multiple Web Servers and proxies

Multiple Databases and indexes

Hopefully also...

Multiple Web Servers and proxies

Multiple Databases and indexes

High Availability

Hopefully also...

Multiple Web Servers and proxies

Multiple Databases and indexes

High Availability

Support many devices

Then you'll need

Multiple Web Servers and proxies

Multiple Databases and indexes

High Availability

Support many devices

Caching

Then you'll need

Multiple Web Servers and proxies

Multiple Databases and indexes

High Availability

Support many devices

Caching

Multiple geographic regions

Then you'll need

Multiple Web Servers and proxies

Multiple Databases and indexes

High Availability

Support many devices

Caching

Multiple geographic regions

CDN

Then you'll need

Multiple Web Servers and proxies

Multiple Databases and indexes

High Availability

Support many devices

Caching

Multiple geographic regions

CDN

Business Analytics

Then you'll need

Multiple Web Servers and proxies

Multiple Databases and indexes

High Availability

Support many devices

Caching

Multiple geographic regions

CDN

Business Analytics

CI/CD Pipeline

...and don't forget.

Each of these involves N
microservices

So, monitoring?

Monitoring

vs

Observability

Observability Mindset

Three Pillars

Logs

Metrics

Tracing

Logs
Likely familiar to many of you...

INFO workflow_trace Starting workflow [name=wf, input={container: overcloud}]
INFO workflow_trace Workflow 'wf' [IDLE -> RUNNING, msg=None] (execution_id=ID)
...
INFO workflow_trace Task 'send_message' [RUNNING -> SUCCESS, msg=None] (execution_id=ID)

Or, generally...

TIMESTAMP PID LOG_LEVEL LOG_NAME MESSAGE

Logs - Errors

Exception handling (with services like Sentry)

Alerts/Notifications

Open Source

from sentry_sdk import init, capture_message
init("mydsn@sentry.io/123")
def my_app():
 raise Exception("Everything is broken")

Logs - Add Structure

Use structlog

Pretty logs for development

Structured data for production

>>> import structlog
>>> LOG = structlog.get_logger("myapp.auth")
>>> LOG.info("User login failed", login_attempt=10, other_data="datas")
2019-07-02 13:36.27 User login failed login_attempt=10 other_data=datas
>>> # Or with the JSON renderer
>>> LOG.info("User login failed", login_attempt=10, other_data="datas")
2019-07-02 13:36.27 {"event": "User login failed",
 "login_attempt": 10, "other_data": "datas"}

Logs - Add Request UUIDs

import flask; import uuid; app = flask.Flask(__name__)
def before():
 request_id = flask.request.headers.get('X-Request-ID')
 if not request_id:
 request_id = str(uuid.uuid4())
 flask.g.request_id = request_id

def after(resp):
 resp.headers.add('X-Request-ID', flask.g.request_id)
 return resp

app.before_request(before)
app.after_request(after)

Logs - Limitations

Too granular, hard to see trends

Hard to monitor

Expensive to store

Metrics

There are many options here like Prometheus, InfluxDB and Datadog

Basic metrics; error rate, response time, request volume

Metrics - Database

Number of database queries

Query duration

Metrics - statsd

import statsd
client = statsd.StatsClient("localhost", 8125)
timer = Timer('application_name')

@timer.decorate()
def my_fn():
 a = 1
 with timer.time("measure-span")
 b = a * 10
 return b

Tracing

Possibly the most useful

Possibly also the hardest

Solutions from Datadog APM, Elastic APM, Zipkin and others

Tracing Integration

import opentracing
from flask_opentracing import FlaskTracing

app = Flask(__name__)

opentracing_tracer = ## some OpenTracing tracer implementation
tracing = FlaskTracing(opentracing_tracer, True, app, [optional_args])

Recap

Logs

Metrics

Tracing

Are we done?

It is not enough

Just doing these doesn't mean you are done

How you use this data and how to share and present it matters

Integrating all of these together is where the real power lies

A Practical Approach

Start collecting data

Learn from it

Rinse repeat

Further Reading

Three Pillars, Zero Answers:
We Need to Rethink Observability
Ben Sigelman

“

“

Thanks!

