
Distroless Docker
Containers for

Machine Learning
at ING

About me

- Bachelor of Computer Science at Delft University
- Currently doing my Master’s in Computer Science

- Specializing in Data Science

- Working as a machine learning engineer at ING bank
- Productionalizing Machine Learning

- First time giving a talk (scary!)

- Some context: machine learning in production
- A journey of a simple use case

- Analyzing our use case
- Distrofying our use case

What I’ll be talking about today

Machine Learning in production

- Many teams, many models
- Having each team manage their model and exposing an API does not promote uniformity

within an organisation

Enter: The Machine Learning Platform

- Many models on one infrastructure
- ‘Container platform’

- Specialized pipelines for data scientists
- Model orchestration
- Many models running in their own environments

- Excellent use-case for containers!

Machine Learning, some concerns

- Machine learning models handle sensitive data
- Combination of features can lead to identification
- Anonymization is very difficult!

- Parameters of a machine learning model may be used maliciously or may
also contain sensitive information

- For example: transforming words into vectors

- This talk: be aware of the container your model runs in

Our little model

Our little model

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

iris = datasets.load_iris()

model = RandomForestClassifier()

model.fit(iris.data, iris.target)

Our little model, continued

import numpy as np

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route('/predict', methods=['POST'])

def predict():

 data = request.json["data"]

 prediction = model.predict(np.expand_dims(data, axis=0))

 return jsonify({"result": int(prediction[0])})

Our little model, a quick test

$ curl -H 'Content-Type: application/json' \
 -d '{"data": [5.9, 3.0, 5.1, 1.8]}' \
 -X POST http://localhost:5000/predict

{

 "result": 2

}

Returns...

$ flask run

Our little model, dockerized

FROM python:3

WORKDIR /usr/src/app

COPY requirements.txt ./

RUN pip install -r requirements.txt

COPY app.py app.py

CMD ["flask", "run"]

$ docker build -t my-python-app:1.0.0 .

$ docker run -p 5000:5000 --name app my-python-app:1.0.0

Our little model, a quick test

flask run

curl -H 'Content-Type: application/json' \
 -d '{"data": [5.9, 3.0, 5.1, 1.8]}' \
 -X POST http://localhost:5000/predict

{

 "result": 2

}

Returns...

Scanning images

- Dynamic analysis
- We can actively monitor the running container

- Static analysis
- We can perform analysis before running the container

Scanning images, static analysis with clair

- Simply specify the image!

$ clair-scanner -r report.json --ip docker.for.mac.localhost \

my-python-app:1.0.0

Inspecting the image, miscellaneous

- The size of the image is quite large, 1.1 GB
- Any user who is part of the docker group can attach a shell and modify the

docker container

$ docker exec -it --name app sh

ls

...

Distroless, what is it?

“"Distroless" images contain only your application and its
runtime dependencies. They do not contain package
managers, shells or any other programs you would expect to
find in a standard Linux distribution.”

 https://github.com/GoogleContainerTools/distroless

https://github.com/GoogleContainerTools/distroless

Our little model, revisited

FROM gcr.io/distroless/python3

WORKDIR /usr/src/app

COPY requirements.txt ./

RUN pip install -r requirements.txt

COPY app.py app.py

CMD ["flask", "run"]

$ docker build -t my-python-app:1.0.0 .

/bin/sh: 1: pip: not found

Our little model, revisited, multi-stage

FROM python:3.5 AS build
COPY requirements.txt .
RUN pip install -r ./requirements.txt

FROM gcr.io/distroless/python3
COPY --from=build /usr/local/lib/python3.5/site-packages/ \
 /usr/lib/python3.5/.
ENV LC_ALL C.UTF-8
WORKDIR /usr/src/app
COPY app.py app.py
CMD ["-m", "flask", "run"]

Inspecting the image, miscellaneous

- The size of the image is smaller, 250MB, quite a significant reduction!
- Any user who is part of the docker group can attach a shell; however, it is

more difficult to modify the docker container

-

docker exec -it --name app sh

ls

sh: 1: ls: not found

But we can do better!

- If we inspect the image, 50MB originates from the distroless image and
200MB from the python dependencies!

A short introduction, PyInstaller

- PyInstaller allows us to freeze our dependencies
- This way, we can decrease the size of our images significantly!

Our little model, some changes

app = Flask(__name__)

...

if __name__ == "__main__":

 app.run()

$ python app.py

$ flask run

Our little model, with PyInstaller

FROM python:3 AS build
WORKDIR /usr/src/app
COPY requirements.txt app.py ./
RUN pip install --upgrade pip --upgrade setuptools && \
 pip install -r requirements.txt && \
 pyinstaller app.py

FROM gcr.io/distroless/python3
COPY --from=build /usr/src/app/dist /usr/src/app/dist
ENTRYPOINT [“/usr/src/app/dist/app”]

Our little model, attempt #1

$ docker run my-distroless-python-app:1.0.0

ModuleNotFoundError: No module named 'sklearn.utils._cython_blas'

- Sometimes we have to help PyInstaller find imports through specification
files

Our little model, PyInstaller spec file

a = Analysis(['app.py'],

 hiddenimports= [

 'sklearn.utils._cython_blas',

 'sklearn.ensemble',

 'sklearn.neighbors.typedefs',

 'sklearn.neighbors.quad_tree',

 'sklearn.tree._utils'

],

datas=collect_data_files(‘sklearn.datasets’)

)

...
COPY requirements.txt \

app.py app.spec .
...
RUN pyinstaller app.spec
...

Our little model, attempt #2

$ docker run my-distroless-python-app:1.0.0

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

- The size of the image has been reduced to 97MB!

Our little model, further improvements

- Bundle PyInstaller executable with python library files and use scratch image

Lastly, Some docker tips

- Don’t run as root
- Use image hash instead of image name and tag
- Build your own distroless images
- Sign docker images

To summarize

- Be careful in which images you choose for your models
- Use smaller (distroless) images to limit possible exposure to vulnerabilities

Thanks so much!

- Code highlighter for slides:
- https://github.com/romannurik/SlidesCodeHighlighter

- Clair-scanner:
- https://github.com/arminc/clair-scanner

- Awesome libraries used:
- https://github.com/matplotlib/matplotlib
- https://github.com/numpy/numpy
- https://github.com/scikit-learn/scikit-learn
- https://github.com/pallets/flask
- https://github.com/docker/docker-ce

https://github.com/romannurik/SlidesCodeHighlighter
https://github.com/arminc/clair-scanner
https://github.com/matplotlib/matplotlib
https://github.com/numpy/numpy
https://github.com/scikit-learn/scikit-learn
https://github.com/pallets/flask
https://github.com/docker/docker-ce

