
The dos and don’ts of task queues

EuroPython 2019

Petr Stehlík
@petrstehlik

Petr Stehlík

Python developer @ Kiwi.com

Finance tribe

$ whoami

1. Task queues
2. The story
3. Examples vs. reality
4. Final setup
5. How we do it in Kiwi.com
6. Lessons learned
7. Q&A

Outline

Task queues

“parallel execution of discrete tasks without blocking”

● Not just Celery

● Major parts

○ Queue

○ Task – unit of work

○ Producer

○ Consumer

What is a task queue

Source: DENÍK/Michal Kovář

● Decouple long-running task from a synchronous call

● Perform something periodically

● Break down software to more isolated pieces (when microservice is

too big)

● Minimize wait time, latency and/or response time

● Increase throughput of the system

For what is a task queue

The story

The story

“New is always better.”

The story

“Think outside the box.”

The story

“I know everything I need.”

The story

“I can do it better.”

The story

Examples vs. reality
why it all happened

Example Celery/RQ

Reality RQ

Reality Celery

Final setup

● Python + PostgreSQL

● Flask

● Connexion

● Celery

● Redis on AWS

● Multiple deploy targets

● Logz.io & Datadog

● Sentry

● PagerDuty

Final setup

How we do it in Kiwi.com
In finance tribe

● Python + PostgreSQL

● Flask/AioHttp

● Connexion

● Celery

● Redis on AWS

● Multiple deploy targets

● Logz.io & Datadog

● Sentry

● PagerDuty

Kiwi.com | Finance Tribe toolset

● Python

○ New projects always 3.6+

○ Old projects transitioning from 2.7 to 3.6

○ Monolith -> microservice architecture

● Flask/AioHttp

○ Our go-to framework

○ Boilerplates

○ Quick scaffolding

● Connexion

○ OpenAPI 3

○ Token-based authentication & authorization

Kiwi.com | Finance Tribe toolset

● Celery

○ Follow the best practices (next section)

● Redis on AWS

○ Reliability

○ Easy to deploy

Kiwi.com | Finance Tribe toolset

● Multiple deploy targets

○ HTTP API

○ Workers

○ Etc.

○ Internal tool for deploying from Gitlab CI

● Logz.io & Datadog

○ Extensive logging

● Sentry

○ When something goes wrong

● PagerDuty

○ When something goes really wrong

Kiwi.com toolset | Finance Tribe

Lessons learned

Lessons learned

Use Redis or AMQP broker (never a database)

Lessons learned

Pass simple objects to the tasks

Lessons learned

Do not wait for tasks inside tasks

Lessons learned

Set retry limit

Lessons learned

Use autoretry_for

Lessons learned

Use retry_backoff=True and retry_jitter=True

Lessons learned

Set hard and soft time limits

Lessons learned

Use bind for a bit of extra oomph (logs, handling, etc.)

Lessons learned

Use separate queues for demanding tasks (set priorities)

Lessons learned

Prefer idempotency and atomicity

"Idempotence is the property of certain
operations in mathematics and
computer science, that can be applied
multiple times without changing the
result beyond the initial application."

 - Wikipedia

“Atomic operation appears to the rest of
the system to occur instantaneously.
Atomicity is a guarantee of isolation
from concurrent processes.

 - Wikipedia

● Use Redis or AMQP (RabbitMQ) broker (never a database)

● Pass simple objects to the tasks

● Do not wait for tasks inside tasks

● Set retry limit

● Use autoretry_for

● Use retry_backoff=True and retry_jitter=True

● Set hard and soft time limits

● Use bind for a bit of extra oomph in tasks (logging, handling, etc.)

● Use separate queues for demanding tasks (set priorities)

● Prefer idempotency and atomicity

Lessons learned

● Sharing codebase between producer and consumer (producer must know everything about

consumer and vica versa)

● Use celery to its full potential -> read celery’s docs

● Scalability of 3rd party APIs

Things to consider

More info @
meet.kiwi.com

Join our Wednesday
party at Europython and
win flight vouchers

Meet us at the booth #45

Any questions?

You can find me at
@petrstehlik & petr.stehlik@kiwi.com

