
Tin Marković, Booking BE Team Lead

Refactoring in Python

Patterns & Approach



2

Introduction
 What is refactoring?
 What’s the point?
 How to do it well?
 Why not throw away everything?



3

Speaker
 Tin

 Team Leader at Kiwi.com

 Software Architecture as passion

 Experiences working with edX and other big projects

 What can I share? What have I seen?



4

Abstract
 Read from old code, see the secrets it hides
 Chesterton’s Fence
 Incremental changes
 Modernize, don't reinvent
 Bubble of testability



5

Overview
 General topic, specific examples

 Easy Wins
 Patterns and Antipatterns
 Philosophy



6

Easy Wins: Intro
 Easy wins are easy

 Plugins
 Libraries
 Utilities

 Dances around the root cause



7

Automated code quality
 Tools are cool
 One decision, vast time saved
 Examples:

 Pylint
 MyPy
 Black
 Coala



8

Tools: PyLint and MyPy
 Pylint "lints" code according to rules
 Established industry practice
 Bare minimum, often not automated
 MyPy checks if annotations follow typing
 Opt-in on a per-function basis
 Easy to implement slowly



9

Tools: Black
 Black keeps code style consistent
 Super simple to run and keep running
 No arguments about unimportant things
 Keeps the same interpreter output



10

Tools: Coala
 More advanced tools
 Very modular, a framework for other tools
 Easy complexity checks
 Can auto-fix code locally



11

Example before/after tooling



12

Easy Wins: Conclusions
 Tools make a lot of discussion not necessary
 This is a great win:

 More thinking about problems
 Less thinking about linebreaks

 Easy bump in code quality
 Just a bump, doesn't solve core issues



13

Patterns and Antipatterns: 
Introduction

 Code hard to use
 Suprising facts
 Principle of Least Astonishment
 Legacy is often astonishing
 "Historical Reasons"



14

Code Smells
 Smells of:

 Neglect
 Inconsistency
 Redundancy

 Because of:
 Deadlines
 Cost-cutting
 Prototyping
 Top Prio Requests



15

Levels of Code Smell
 Easy smells:

 Couple of lines of code, scope nonexistent
 Medium smells:

 Architecture mistakes
 Larger scope and respawning

 Hard smells:
 Easy to notice, impossible to remove
 "Lets rewrite everything!"



16

Examples of Code Smell
 Easy

 Hard: Implement ORM

 Medium



17

Tools: SonarQube
 Static analysis of code
 Analyses:

 bugs
 code smells
 known security oversights
 test coverage and complexity
 comments and docs



18

Example: SonarQube output



19

Example: SonarQube output



20

Antipatterns to recognize
 Antipatterns mostly unique to codebase
 Lack of strong architectural direction
 Organic code growth
 Copy paste coding



21

Magical methods
 Lacking explicit input and output
 Usually an implemented side effect
 Replaced by better object oriented approach



22

Overly important decorators
 Should not modify function signature
 Should be explicit
 Should not replace method calls



23

Patterns to implement
 Old code needs separation
 New code needs to flourish
 Separation patterns:

 Interface
 Facade (and inverted)



24

Interface
 Find common usages of code pattern
 Try to find base use-case
 Create interface
 Add edge-cases through implementations



25

Facade
 Cleaner code can't be a one-time thing
 Wrap your code in a facade fitting old code
 Keep required side-effects there, but obvious
 Manage required functionality in one place



26

Inverted Facade
 Keep old code abstracted behind a facade
 Use an interface that you would expect
 Implementation is hacky, but you start:

 implementing a contract
 standardizing access
 showing the ideal state



27

Patterns and Antipatterns: 
Conclusions

 Code is almost never pretty after growth
 We can't throw everything away
 We can improve gradually
 Bubble of clean code



28

Philosophy: Introduction
 Theory is good, implementation better
 Rules need to be established
 If it isn't enforced, it doesn't exist
 Cost benefit analysis is for everyone



29

Approaching problem slowly
 Rapid changes do not help stability
 It worked so far, keep it working
 Incremental steps, with time to adapt



30

Code Review Rules
 Enforce code review
 Require tools to pass, add CI if possible
 Split responsibility 1:3
 Reduce bus factor



31

Code Review Best Practices
 Blameless
 Impersonal
 Triple tier system

 Overall scope
 System scope
 Code scope



32

Education is most influential
 Make sure devs understand the why
 Document everything, incrementally
 Enforce better documentation 
before and after change

 Explain architecture and direction



33

There is no Easy Victory
 Easy wins are a step
 Quality increases slowly
 Tools don't replace engineering



34

Code is written to be 
replaced

 Best code can be rewritten easily
 Less interdependent, better
 Allow easy reuse, allow easy replacement



35

How does Code Debt hurt
 Code debt is real debt
 Eventually, things will crash down
 Mistakes happen more often
 Implementation is slower



36

How to counteract 
management

 Management usually needs convincing
 Examples of mistakes that caused losses
 Blame code debt, not developers
 Assert no false flags, keep credibility



37

Philosophy: Conclusions
 Low quality code is often a symptom
 Go for the cause, step by step
 Consistency is more important than bursts
 No easy victory



38

Conclusions
 Old code tells a story
 The story needs to modernize, not disappear
 Grab the easy boosts
 Rewrite current failures in bubbles
 Mantain quality going forward



ANY QUESTIONS?
You can find me at tin.markovic@kiwi.com

Or at https://www.linkedin.com/in/tin-markovic

Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

