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Introduction
 What is refactoring?
 What’s the point?
 How to do it well?
 Why not throw away everything?
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Speaker
 Tin

 Team Leader at Kiwi.com

 Software Architecture as passion

 Experiences working with edX and other big projects

 What can I share? What have I seen?
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Abstract
 Read from old code, see the secrets it hides
 Chesterton’s Fence
 Incremental changes
 Modernize, don't reinvent
 Bubble of testability
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Overview
 General topic, specific examples

 Easy Wins
 Patterns and Antipatterns
 Philosophy
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Easy Wins: Intro
 Easy wins are easy

 Plugins
 Libraries
 Utilities

 Dances around the root cause
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Automated code quality
 Tools are cool
 One decision, vast time saved
 Examples:

 Pylint
 MyPy
 Black
 Coala
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Tools: PyLint and MyPy
 Pylint "lints" code according to rules
 Established industry practice
 Bare minimum, often not automated
 MyPy checks if annotations follow typing
 Opt-in on a per-function basis
 Easy to implement slowly
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Tools: Black
 Black keeps code style consistent
 Super simple to run and keep running
 No arguments about unimportant things
 Keeps the same interpreter output
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Tools: Coala
 More advanced tools
 Very modular, a framework for other tools
 Easy complexity checks
 Can auto-fix code locally
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Example before/after tooling
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Easy Wins: Conclusions
 Tools make a lot of discussion not necessary
 This is a great win:

 More thinking about problems
 Less thinking about linebreaks

 Easy bump in code quality
 Just a bump, doesn't solve core issues
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Patterns and Antipatterns: 
Introduction

 Code hard to use
 Suprising facts
 Principle of Least Astonishment
 Legacy is often astonishing
 "Historical Reasons"
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Code Smells
 Smells of:

 Neglect
 Inconsistency
 Redundancy

 Because of:
 Deadlines
 Cost-cutting
 Prototyping
 Top Prio Requests
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Levels of Code Smell
 Easy smells:

 Couple of lines of code, scope nonexistent
 Medium smells:

 Architecture mistakes
 Larger scope and respawning

 Hard smells:
 Easy to notice, impossible to remove
 "Lets rewrite everything!"
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Examples of Code Smell
 Easy

 Hard: Implement ORM

 Medium
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Tools: SonarQube
 Static analysis of code
 Analyses:

 bugs
 code smells
 known security oversights
 test coverage and complexity
 comments and docs
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Example: SonarQube output
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Example: SonarQube output
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Antipatterns to recognize
 Antipatterns mostly unique to codebase
 Lack of strong architectural direction
 Organic code growth
 Copy paste coding
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Magical methods
 Lacking explicit input and output
 Usually an implemented side effect
 Replaced by better object oriented approach
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Overly important decorators
 Should not modify function signature
 Should be explicit
 Should not replace method calls
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Patterns to implement
 Old code needs separation
 New code needs to flourish
 Separation patterns:

 Interface
 Facade (and inverted)
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Interface
 Find common usages of code pattern
 Try to find base use-case
 Create interface
 Add edge-cases through implementations
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Facade
 Cleaner code can't be a one-time thing
 Wrap your code in a facade fitting old code
 Keep required side-effects there, but obvious
 Manage required functionality in one place
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Inverted Facade
 Keep old code abstracted behind a facade
 Use an interface that you would expect
 Implementation is hacky, but you start:

 implementing a contract
 standardizing access
 showing the ideal state
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Patterns and Antipatterns: 
Conclusions

 Code is almost never pretty after growth
 We can't throw everything away
 We can improve gradually
 Bubble of clean code
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Philosophy: Introduction
 Theory is good, implementation better
 Rules need to be established
 If it isn't enforced, it doesn't exist
 Cost benefit analysis is for everyone
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Approaching problem slowly
 Rapid changes do not help stability
 It worked so far, keep it working
 Incremental steps, with time to adapt
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Code Review Rules
 Enforce code review
 Require tools to pass, add CI if possible
 Split responsibility 1:3
 Reduce bus factor
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Code Review Best Practices
 Blameless
 Impersonal
 Triple tier system

 Overall scope
 System scope
 Code scope
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Education is most influential
 Make sure devs understand the why
 Document everything, incrementally
 Enforce better documentation 
before and after change

 Explain architecture and direction
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There is no Easy Victory
 Easy wins are a step
 Quality increases slowly
 Tools don't replace engineering



34

Code is written to be 
replaced

 Best code can be rewritten easily
 Less interdependent, better
 Allow easy reuse, allow easy replacement
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How does Code Debt hurt
 Code debt is real debt
 Eventually, things will crash down
 Mistakes happen more often
 Implementation is slower
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How to counteract 
management

 Management usually needs convincing
 Examples of mistakes that caused losses
 Blame code debt, not developers
 Assert no false flags, keep credibility
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Philosophy: Conclusions
 Low quality code is often a symptom
 Go for the cause, step by step
 Consistency is more important than bursts
 No easy victory
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Conclusions
 Old code tells a story
 The story needs to modernize, not disappear
 Grab the easy boosts
 Rewrite current failures in bubbles
 Mantain quality going forward



ANY QUESTIONS?
You can find me at tin.markovic@kiwi.com

Or at https://www.linkedin.com/in/tin-markovic

Thanks!
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