

SUPERCHARGE YOUR AI APPLICATIONS ON INTEL ARCHITECTURE

Shailen Sobhee

AI Specialist @ Intel

Developer Products Division

About your trainer today

- Shailen Sobhee
- AI Software Technical Consulting Engineer @ Intel
- Computer Science and Electrical Engineering (Jacobs University Bremen)
- Computational Science and Engineering (Technical University Munich)

- Overview of Intel[®] software and hardware
 - We will go quick through them ③
- Hands-on activity with a concrete medical example
 - Brain tumour detection using deep learning

Legal Disclaimer & Optimization Notice

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Performance results are based on testing as of July 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

INTEL® PARALLEL STUDIO XE 2019

What's Inside Intel® Parallel Studio XE 2019

Comprehensive Software Development Tool Suite

Γ		COMPOSER EDITION	PROFESSIONAL EDITION	CLUSTER EDITION
	C	BUILD ompilers & Libraries	ANALYZE Analysis Tools	SCALE Cluster Tools
	C / C++, Fortran Compilers Intel® Integr Image Intel®	Intel® Math Kernel Library Intel® Data Analytics Acceleration Library Intel Threading Building Blocks C++ Threading rated Performance Primitives e, Signal & Data Processing Distribution for Python*	Intel® VTune™ Amplifier Performance Profiler Intel® Inspector Memory & Thread Debugger Intel® Advisor Vectorization Optimization Thread Prototyping & Flow Graph Analysis	Intel® MPI Library Message Passing Interface Library Intel® Trace Analyzer & Collector MPI Tuning & Analysis Intel® Cluster Checker Cluster Diagnostic Expert System
Or Ir	perating System: Winntel® Architecture P	ndows*, Linux*, MacOS ¹ * latforms		(inter CORE inside

¹Available only in the Composer Edition.

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

HPC & AI Software Optimization Success Stories Intel® Parallel Studio XE

SCIENCE & RESEARCH

Up to **35X** faster application performance

NERSC (National Energy Research Scientific Computing Center)

Read case study

ARTIFICIAL INTELLIGENCE

Performance speedup of up to **23X** faster with Intel optimized scikit-learn vs. stock scikit-learn Google Cloud Platform

Read blog

LIFE SCIENCE

Simulations ran up to 7.6X faster with 9X energy efficiency**

LAMMPS code - Sandia National Laboratories

Read technology brief

For more success stories, review Intel® Parallel Studio XE Case Studies

**Intel® Xeon Phi™ Processor Software Ecosystem Momentum Guide

Performance results are based tests from 2016-2017 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations & functions. Any change to any of those factors may cause the results to vary. You should consult other information & performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to <u>www.intel.com/performance</u>. See configurations in individual case study links. Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors. Certain optimizations not specific to intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804. For more complete information about compiler optimizations, see our <u>Optimizations Notice</u>.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

AI - OVERVIEW

AI technologies are evolving fast and growing increasingly critical to firms' ability to win, serve, and retain customers.

THE AI MANDATE

...strategic technologies for 2019 with the potential to drive significant disruption and deliver opportunity over the next five years

...70% of CIOs will aggressively apply data and AI to IT operations, tools, and processes by 2021.

FORRESTER^{**}

Gartner

]	D	С
 Ana	lyze t	he Future

The time to begin AI adoption is now

he+Forrester+Tech+Tide+Artificial+Intelligence+For+Business+Insights+Q3+2018/-/E-RES143252 /ithgartner/gaither-top-1Q-strategic-technology-trends-for-2019

AI SOLUTIONS IN EVERY MARKET

AGRICULTURE	ENERGY	EDUCATION	GOVERNMENT	FINANCE	HEALTH
Achieve higher yields & increase efficiency	Maximize production and uptime	Transform the learning experience	Enhance safety, research, and more	Turn data into valuable intelligence	Revolutionize patient outcomes
INDUSTRIAL	MEDIA	RETAIL	SMART HOME	TELECOM	TRANSPORT

Intel and our partners are driving real-world value with AI

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. © 2019 Intel Corporation வண்ண்ண்ண்ணில் விலுக்கு விலுக்கு விலுக்கு விலுக்கு விலுக்கு விலுக்கு விலுக்கு விலுக்கு வ All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice. *Other names and brands may be claimed as the property of others

		ARTIFICIAL INTELLIGENCE				
	Solution Architects	Platforms	Finance Healthcare Energy	ustrial Transport Retail Home More		
		DEEP LEAR	NING DEPLOYMENT	DEEP LEARNIN		
KN	I UULKI I 9	<u>OpenVINO™ †</u>	<u>Intel® Movidius</u>	<u>SDK</u> Intel® Deep		
II	App 👌 Developers 📥	<u>Open Visual Inference & N</u> eural Network <u>Opti</u> toolkit for inference deployment on CPU, pro- graphics, FPGA & VPU using TF, Caffe* & M	mization Optimized inference dep ocessor for all Intel® Movidius™ V 1XNet* TensorFlow* & Cat	bloyment Learning Studio* PUs using Open-source tool to compress ffe* deep learning development cycle		
IE						
ΕĒ.		MACHINE LEARNING LIBRARIES Python R Distributed • Scikit-learn • Cart • MlLib (on Spark) • Pandas • Random • Mahout	Now optimized for CPU	RNING FRAMEWORKS U Optimizations in progress ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		
ĊĨ	Scientists 🍑	• <u>NumPy</u> <u>Forest</u> • <u>e1071</u>	TensorFlow* MXNet* Caffe* BigDL/	Spark* Caffe2* PyTorch* PaddlePaddle*		
U I	ΓΟΠΝΟΥΤΙΟΝ	ANALYTICS, MACHINE & DEEP	LEARNING PRIMITIVES	DEEP LEARNING GRAPH COMPILER		
16	FUUNDATION	Python DAAL	MKL-DNN	Intel® nGraph™ Compiler (Alpha)		
AE	Library 😥 Developers	Intel distribution Intel [®] Data Analytics optimized for Acceleration Library machine learning (for machine learning)	Open-source deep neural network functions for cor CPU, processor graphics N	Open-sourced compiler for deep learning model nputations optimized for multiple devices (CPU, GPU, INP) using multiple frameworks (TF, MXNet, ONNX)		
LN			DEEDI			
	HARDWARE IT System	AT FOUNDATION Data	Center dge evice NNP L-1000			
*Other names and brands may All products, computer systems	be claimed as the property of others. and dates, and figures are preliminary bas	sed on current expectations, and are subject to change without	notice.			
Ontimination	Netice					

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

(intel)

THE DEEP LEARNING MYTH

"A GPU is required for deep learning..." FALSE

Most businesses (---) use the <u>CPU</u> for machine & deep learning needs

Some early adopters (----) may reach a deep learning tipping point when acceleration is needed¹

"Most businesses" claim is based on survey of Intel direct engagements and internal market segment analysis

DEEP LEARNING IN PRACTICE

Photo

Source Paper:

research.fb.com/ wpcontent/uploads/2017/12 /hpca-2018-facebook.pdf

> Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective Kim Hardward, Sards Kurk, Dond Brocks, Konnich David, Vice But, Bayre Bahrada, Mohammed Fazzyr, Bill Li, Y. Wang, Ju, Aldy Kole, Andrea Kurk, Sara Sara Sara Farter Navadhara, Walak Swedyanky, Lang Xiraj, Navada Kurk, Sara Sara Farter Saradhara, Shaki Swedyanky, Lang Xiraj, Navada Kurk, Sara Sara Farter Saradhara, Shaki Swedyanky, Lang Xiraj, Navada Kurk, Sara Sara Kurk, Saradhara, Shaki Swedyanky, Lang Xiraj, Navada Kurk, Sara Sarahara, Sa

The barries of the second seco

1. INTERNATION

Facebook's mission is to "Give people the power to build community and bring the world clover together. In support of that mission, Eacebook open up profit in an environment of that mission, Eacebook connects more than two billion grants will had to proving salability address to tam. people as of December 2017. Meanwhile, the past several deploying the infrastructure to these services White optiyears have seen a revolution in the application of machine can opportunities cost to optimize infraometice or costing learning to real problems at this scale, building upon the platterns, we conting to actudy relate and powers virtuous cycle of machine learning algorithmic innovations, new budware whitein while remaining organit of pair ensermous amounts of training data for models, and alcances changing algorithms unsequenin high-performance computer architectures [1]. At Excbook, machine learning provides key capabilines in driving nearly major models about makine learning a fundook all aspects of user experience including services late railong • Machine learning is applied personally areas notly all posts for News Feed, speech and text translations, and photoand real-time video classification [2], [3].

Facebook leverages a wide variety of machine learning algorithms in these services including support vector machines.

gradient boosted decision trees, and many styles of neural networks. This paper describes several important aspects of datacenter infrastructure that supports machine learning at Facebook. The infrastructure includes internal "Microin Laccostor, the inflastituativ memory include 36,492 Service" flows, open-source machine learning frameworks. and distributed training algorithms. From a hardware point of view, Facebook because a large fleet of CPU and GPU in two, reactions, erages a large det of CPU as platforms for training modes and the platform the real chine learning inference, taken as the statistical statistic for all major services at home and the statistical balance

devaster accovery capilities. Devaster convery planning is to important to Faultook's operations. Looking torward, Vaultook, coputs rapid proofs in no The key contributions of this piper metals the follower

services, and computer vision represents only a small fraction of the resource sequences. • Facebook relies upon an incedelity discret set of machine learning approaches including, but we family to

. Tremendous amounts of data are branched through m machine learning pipelines, and this cocies engineers machine learning presides an beyond the compute tool and efficiency challenges for beyond on CPCs for inferen-

V	acchools concernity revealed GPUs for training, but concurrent
	periodypes and communication perspective.

cloud users	employ	CPU	extensively	y for	deep	learning
-------------	--------	-----	-------------	-------	------	----------

Ranking Language Spam Search Services **Generation Translation** Algorithm Tagging Flagging Model(s) MLP SVM.CNN CNN MLP RNN GBDT Inference CPU CPU CPU CPU CPU CPU Resource GPU & Training CPU CPU GPU Depends GPU Resource CPU Training Every N Multi-Daily Hourly Weekly Sub-Daily photos Monthly Frequency Training Few Manv Many **Few Hours** Few Hours Days Duration Hours Seconds Hours

Photo Text

Optimization Notice

Speech

RNN

CPU

GPU

Weekly

Manv

Hours

INTEL® DISTRIBUTION FOR PYTHON 2019

The most popular languages for Data Science

"Python wins the heart of developers across all ages, according to our Love-Hate index. Python is also the most popular language that **developers want to learn** overall, and a **significant share already knows it**"

2018 Developer Skills Report

H

HackerRank

- <u>Python</u>, Java, R are top 3 languages in job postings for data science and machine learning jobs
 - <u>https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html</u>

Dnuggets

The most popular ML/DL packages for Python

High Performance Parallelism Pearls VOLUME TWO

M<

Chapter 19: Performance Optimization of Black—Scholes Pricing

$$\begin{split} & V_{\text{call}} = S_0 \cdot \text{CDF}\left(d_1\right) - e^{-rT} \cdot X \cdot \text{CDF}\left(d_2\right) \\ & V_{\text{pat}} = e^{-rT} \cdot X \cdot \text{CDF}\left(-d_2\right) - S_0 \cdot \text{CDF}\left(-d_1\right) \end{split}$$

Performance gap between C and Python

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

What's Inside Intel® Distribution for Python 2019

High Performance Python* for Scientific Computing, Data Analytics, Machine Learning

FASTER PERFORMANCE	GREATER PRODUCTIVITY	ECOSYSTEM COMPATIBILITY		
Performance Libraries, Parallelism, Multithreading, Language Extensions	Prebuilt & Accelerated Packages	Supports Python 2.7 & 3.x, conda, pip		
Accelerated NumPy/SciPy/scikit-learn with Intel® MKL ¹ & Intel® DAAL ²	Prebuilt & optimized packages for numerical computing, machine/deep learning, HPC, & data analytics	Compatible & powered by Anaconda*, supports conda & pip		
Data analytics, machine learning & deep learning with scikit-learn, pyDAAL Scale with Numba* & Cython*	Drop in replacement for existing Python - No code changes required Jupyter* notebooks, Matplotlib	Distribution & individual optimized packages also available via conda, pip YUM/APT, Docker image on DockerHub		
Includes optimized mpi4py , works with Dask* & PySpark* Optimized for latest Intel® architecture	Conda build recipes included in packages Free download & free for all uses	Optimizations upstreamed to main Python trunk Commercial support through Intel® Parallel Studio XE		
Intel® Architecture Platforms	including commercial deployment	CORE 13 CORE 15 CORE 1		

Operating System: Windows*, Linux*, MacOS1*

¹Intel[®] Math Kernel Library ²Intel[®] Data Analytics Acceleration Library

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹ Available only in Intel[®] Parallel Studio Composer Edition.

What's New for 2019? Intel[®] Distribution for Python*

Faster Machine learning with Scikit-learn functions

 Support Vector Machine (SVM) and K-means prediction, accelerated with Intel[®] DAAL

Built-in access to XGBoost library for Machine Learning

Access to Distributed Gradient Boosting algorithms

Ease of access installation

Now integrated into Intel[®] Parallel Studio XE installer.

Speedup Analytics & Machine Learning with Intel[®] Data Analytics Acceleration Library (Intel[®] DAAL)

- Highly tuned functions for classical machine learning & analytics performance from datacenter to edge running on Intel[®] processor-based devices
- Simultaneously ingests data & computes results for highest throughput performance
- Supports batch, streaming & distributed usage models to meet a range of application needs
- Includes Python*, C++, Java* APIs, & connectors to popular data sources including Spark* & Hadoop

What's New in the 2019 Release

New Algorithms

- Logistic Regression, most widely-used classification algorithm
- Extended Gradient Boosting Functionality for inexact split calculations & user-defined callback canceling for greater flexibility
- User-defined Data Modification Procedure supports a wide range of feature extraction & transformation techniques

Learn More: software.intel.com/daal

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Algorithms, Data Transformation & Analysis

Intel® Data Analytics Acceleration Library

Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

LIVE DEMO – MEDICAL SEGMENTATION AND BRAIN TUMOUR PREDICTION

Login to the machine

Make sure you have internet connection and open the following link:

https://tinyurl.com/ep19intel

Mac and Linux users:

- 1. Download the file: gcp.key (this is your private key to allow access to your individual virtual machine).
 - Note, make sure the content starts with: -----BEGIN RSA PRIVATE KEY-----
- 2. Open the GCP_IP_Addresses sheet and keep the IP addresses assigned to you. You should have received a number from me.
- 3. chmod 600 gcp.key
- 4. Connect to the VM: ssh user01@<IP_address> -i gcp.key

Windows users:

Use PuTTy and the user01.ppk file.

If you see this...it worked

Using username "user01". Authenticating with public key "user01" Last login: Tue Jul 9 08:31:21 2019 fromSome IP address Intel(R) Parallel Studio XE 2019 Update 4 for Linux* Copyright (C) 2009-2019 Intel Corporation. All rights reserved. [setupvars.sh] OpenVINO environment initialized (base) [user01@medical-isc2019-vm ~]\$

Start the Jupyter Server

Copy paste the following in the terminal:

jupyter notebook --no-browser --ip 0.0.0.0 --port 8888 &

After that, open the Jupyter notebook in your browser of choice:

<IP_ADDRESS>:8888

Password(if any): intel123

A bit of statistics

As per Globocan 2018 (Global Cancer statistics):

- There were **18.1** million new cancer cases
- and **9.6** million cancer deaths
- in 2018

Statistics source: https://onlinelibrary.wiley.com/doi/full/ 10.3322/caac.21492 (36 cancers in 185 countries)

Introduction

- Gliomas are the most commonly occurring type of brain tumors
 - and are potentially very dangerous
 - with about 90% of Gliomas belonging to a highly aggressive class of cancerous tumors
- Multi-sequence Magnetic Resonance Imaging (MRI) is the primary method of screening and diagnosis for Gliomas

Segmenting the brain tumor

- To assess the severity/for treatment of the tumour, segmentation is important for:
 - focusing on the tumour areas during radiotherapy
 - navigation during surgery

Image sources: Brainlab

The medical challenge

- Not enough expert doctors to analyze all the medical data^[1]
- Tumor regions segmentation is time-consuming and expensive

Sources:

[1] https://www.diagnosticimaging.com/residents/physician-shortage-too-many-radiologists

[2]Corbin K. How CIOs Can Prepare for Healthcare "Data Tsunami" [Internet]. CIO. 2014 [cited 8 FEB 2019].

[3] Fenton SH, Low S, Abrams KJ, Butler-Henderson K. Health Information Management: Changing with Time. IMIA Yearbook of Medical Informatics 2017.

[4]Stanford Medicine. 2017 Health Trends Report: Harnessing the Power of Data in Health. Accessed online 8 FEB 2019.

...machines ca

Automating the process:

- helps gain of time f
- gives time back to
- improves segmentation que
- Nearly 153 exabytes of healthcare and a were generated in 2013

One exabyte is one billion gigabytes or 250 000 000 DVDs worth of information.

- amount to increase by 48% annually
- expected to reach 2,314 exabytes in 2020 ^{[1], [2], [3]}

The dataset for the deep learning algorithm

- Brain Tumor Segmentation (BraTS) Challenge 2018
 dataset
- Goal: classify every voxel in the image as eit
 - i. healthy tissue
 - ii. necrosis or non-enhanck (red)
 - iii. edema (green) or
 - iv. enhancing tumor (y

Further dataset details

- Training dataset: Images of 220 high-grade glioma (HGG), 54 low-grade glioma (LGG) patients ^[1] •
- Image size: 240X240X155 voxels, contain 4-channels •

MRI Input

Sources: [1] https://arxiv.org/ftp/arxiv/papers/1702/1702.04528.pdf

The result of our deep learning algorithm

Example segmentation has been prepared for to compare with target (expert's) segmentation.

The algorithm used (II_Net model)

- Has an encoding path ("contracting") paired with a decoding path ("expanding")
- For each pixel in the original image, it asks the question: "To which class does this voxel belong?"

What software tools did we use in this project?

How did we boost the performance of the algorithm?

Thanks to Intel® Technologies:

The base hardware

Visualization of the end result in 3D

Code source

https://github.com/shailensobhee/medical-decathlon

From the GitHub link:

- Code source
- instructions on how to get the medical dataset

HANDS-ON ACTIVITY

11 ON TR/01 03

Project files description

Train.ipynb Inference.ipynb

model.py - model description
settings.py - project settings
argsparser.py - see how argsparser picks up
the settings.

OPTIMIZATION TECHNIQUES

Parallelism parameters

- inter_op_parallelism_threads independent ops on how many cores?
- intra_op_parallelism_threads one op on how many cores?

Parallelism considerations

KMP_BLOCKTIME	Sets the time, in milliseconds, that a thread should wait, after completing the execution of a parallel region, before sleeping.
KMP_AFFINITY	Enables run-time library to bind threads to physical processing units.
OMP_NUM_THREADS	Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. Default: Number of processors visible to the operating system.

https://www.tensorflow.org/guide/performance/overview

INTEL

Tuning MKL for the best performance

The MKL is optimized for the **NCHW** (channels_first) <u>data format</u> and Intel is working to get near performance parity when using **NHWC**. MKL uses the following environment variables to tune performance:

- KMP_BLOCKTIME Sets the time, in milliseconds, that a thread should wait, after completing the execution of a parallel region, before sleeping.
- KMP_AFFINITY Enables the run-time library to bind threads to physical processing units.
- KMP_SETTINGS Enables (true) or disables (false) the printing of OpenMP* run-time library environment variables during program execution.
- OMP_NUM_THREADS Specifies the number of threads to use.

INTEL® DISTRIBUTION OF OPENVINO[™] TOOLKIT

Take your computer vision solutions to a new level with deep learning inference intelligence.

What it is?

A toolkit to accelerate development of **high performance computer vision** & **deep learning into vision applications** from device to cloud. It enables deep learning on hardware accelerators and easy deployment across multiple types of Intel[®] platforms.

Free Download > software.intel.com/openvino-toolkit

Open Source version > 01.org/openvinotoolkit

Intel[®] Distribution of OpenVINO[™] in a nutshell

THIS IS HPC ON INTEL

(intel)

01 CN TR/01 03

BACKUP

RSH B211 SEARCH ... AD1 RSH B211 SEARCH ... AD1

tttt

SEARCH TR/01 103

KEY PERFORMANCE CONSIDERATIONS ON INTEL PROCESSORS

MEMORY LAYOUTS

Most popular memory layouts for image recognition are **nhwc** and **nchw**

 Challenging for Intel processors either for vectorization or for memory accesses (cache thrashing)

Intel MKL-DNN convolutions use blocked layouts

- Example: nhwc with channels blocked by 16 nChw16c
- Convolutions define which layouts are to be used by other primitives
- Optimized frameworks track memory layouts and perform reorders only when necessary

Fusing computations

On Intel processors a high % of time is typically spent in BW-limited ops

 ~40% of ResNet-50, even higher for inference

The solution is to fuse BW-limited ops with convolutions or one with another to reduce the # of memory accesses

- Conv+ReLU+Sum, BatchNorm+ReLU, etc
- Done for inference, WIP for training

Conv Sum + ReLU Conv Conv+Sum+ReLU

The FWKs are expected to be able to detect fusion opportunities

IntelCaffe already supports this

Major impact on implementation

- All the impls. must be made aware of the fusion to get max performance
- Intel MKL-DNN team is looking for scalable solutions to this problem

LOW-PRECISION INFERENCE

NINTFI

Proven only for certain CNNs by FP32 model F32 model IntelCaffe at the moment A trained float32 model quantized to int8 INT8 model Some operations still run in float32 to preserve accuracy FP32 Primitive -> FP32 INT8 Primitive **FP32** INT8

Intel MKL-DNN integration levels

505

Better performance

Intel MKL-DNN is designed for best performance.

However, topology level performance will depend on Intel MKL-DNN integration.

- Naïve integration will have reorder overheads.
- Better integration will propagate layouts to reduce reorders.
- Best integration will fuse memory bound layers with compute intensive ones or with each other.

′inte

Graph optimizations: fusion

THIS IS HPC ON INTEL

(intel)

• All MKL-DNN operators use highly-optimized layouts for TensorFlow tensors.

TR/01 03

01 ON

BACKUP 2

RSY 0211 SEARCH ... AD1

tttt

RCHPTR/01 03

INTEL® TENSORFLOW OPTIMIZATIONS

INTEL-TENSORFLOW OPTIMIZATIONS

- 1. Operator optimizations
- 2. Graph optimizations
- 3. System optimizations

OPERATOR OPTIMIZATIONS

In TensorFlow, computation graph is a data-flow graph.

IS IS HPC ON INTEL

(inte

OPERATOR OPTIMIZATIONS

- Replace default (Eigen) kernels by highly-optimized kernels (using Intel® MKL-DNN)
- Intel[®] MKL-DNN has optimized a set of TensorFlow operations.
- Library is open-source (https://github.com/intel/mkldnn) and downloaded automatically when building TensorFlow.

Forward	Backward		
Conv2D	Conv2DGrad		
Relu, TanH, ELU	ReLUGrad, TanHGrad, ELUGrad		
MaxPooling	MaxPoolingGrad		
AvgPooling	AvgPoolingGrad		
BatchNorm	BatchNormGrad		
LRN	LRNGrad		
MatMul, Concat			

OPERATOR OPTIMIZATIONS IN RESNET50

Record Save Load	timeline.json							
		0 s						
/job:localhost/replica:0/task:0/device:CPU:0 Compute (pid 1)								
0								
1								
2								
-								
2005 itoms selected	Slices (2005)	1						
Sous nems selected.	- Silces (5005)			0.11.11				
Name 🗸			Wall Duration •	Self time V				
MkIConv2DBackpropFilte	<u>r</u>		545.502 ms	545.502 ms				
MklConv2DBackpropInpu	<u>it</u>		440.090 ms	440.090 ms				
MklConv2D			391.094 ms	391.094 ms				
MklFusedBatchNormGrad	<u>d</u>		184.920 ms	184.920 ms				
MkIFusedBatchNormWith	Relu		158.366 ms	158.366 ms				
MklReluGrad			155.874 ms	155.874 ms				
MklAdd			109.858 ms	109.858 ms				
MklAddN			103.248 ms	103.248 ms				
Slice			84.905 ms	84.905 ms				
Pad			38.684 ms	38.684 ms				
ApplyMomentum			32.977 ms	32.977 ms				
L2Loss			28.264 ms	28.264 ms				
MkIToTf			22.379 ms	22.379 ms				
VariableV2			19.422 ms	19.422 ms				

Intel-optimized TensorFlow timeline

IS IS HPC ON INTEL

Record Save Load	rn50.eigen.json		View Options	6			
		0 s		5 :			
/job:localhost/replica:0/task:0/device:CPU:0 Compute (pid 1)							
0							
1							
2							
3							
4							
5							
1490 items selected.	Slices (1490)						
Name 🗢		١	Wall Duration 🔻	Self time 🗢			
FusedBatchNormGrad			7,933.108 ms	7,933.108 ms			
Conv2DBackpropInput			3,139.385 ms	3,139.385 ms			
Conv2DBackpropFilter			2,539.365 ms	2,539.365 ms			
FusedBatchNorm			873.292 ms	873.292 ms			
Conv2D			640.633 ms	640.633 ms			
ReluGrad			74.733 ms	74.733 ms			
AddN			68.955 ms	68.955 ms			
Add			38.213 ms	38.213 ms			
Relu			38.010 ms	38.010 ms			

Default TensorFlow timeline

GRAPH OPTIMIZATIONS: FUSION

Before Merge After Merge

GRAPH OPTIMIZATIONS: FUSION

Before Merge

US IS HPC ON INTEL

After Merge

(inte

GRAPH OPTIMIZATIONS: LAYOUT PROPAGATION

What is layout?

How do we represent N-D tensor as a 1-D array.

{N:2, R:5, C:5}

TFI

Better optimized for some operations vs.

(int

GRAPH OPTIMIZATIONS: LAYOUT PROPAGATION

Converting to/from optimized layout can be less expensive than operating on un-optimized layout.

All MKL-DNN operators use highlyoptimized layouts for TensorFlow tensors.

(inte

GRAPH OPTIMIZATIONS: LAYOUT PROPAGATION

SYSTEM OPTIMIZATIONS: LOAD BALANCING

TensorFlow graphs offer opportunities for parallel execution. Threading model

- 1. inter_op_parallelism_threads = max number of
 operators that can be executed in parallel
- 2. intra_op_parallelism_threads = max number of threads to use for executing an operator
- 3. OMP_NUM_THREADS = MKL-DNN equivalent of intra_op_parallelism_threads

performance GUIDE

tf.ConfigProto is used to set the inter_op_parallelism_threads and intra_op_parallelism_threads configurations of the Session object.

>>> config = tf.ConfigProto()
>>> config.intra_op_parallelism_threads = 56
>>> config.inter_op_parallelism_threads = 2
>>> tf.Session(config=config)

https://www.tensorflow.org/performance/performance_guide#tensorflow_with_intel_mkl_dnn

SYSTEM OPTIMIZATIONS: LOAD BALANCING

Incorrect setting of threading model parameters can lead to over- or under-subscription, leading to poor performance.

Solution:

- Set these parameters for your model manually.
- Guidelines on TensorFlow webpage

OMP: Error #34: System unable to allocate necessary resources for OMP thread:

OMP: System error #11: Resource temporarily unavailable

OMP: Hint: Try decreasing the value of OMP_NUM_THREADS.

PERFORMANCE GUIDE

Setting the threading model correctly

We provide best settings for popular CNN models. (<u>https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor</u>)

Example setting MKL variables with python **os.environ** :

PERFORMANCE GUIDE

C ON INTEL

Tens			Develop										
Perform Perform Input P High-P4 Benchm Fixed P XLA XLA OV Broadc Using J Operati Shapes Using A Tensort	mance mance Guide Apeline Performa erformance Mod marks Point Quantization ping a new back JIT Compilation ion Semantics and Layout AOT compilation	nce Guide els s and for XLA	Optimizing CPUs, which in the instructions Beyond using th Networks (intel simply referred optimizations. The two config the indivi intra_o the indivi intra_o these configur these configur these configur these configur the solution the comb to the number	I for CPU cludes Intel@ a supported I he latest inst @ MKL-DNN to as' MKL' of urations liste p_parallel dual pieces i p_parallel dual pieces i p_parallel ations are se ww. For both as shown th ined logical of of physical of	J D Xeon Phi™ by the target truction sets, 1) to TensorFo ad below are ism_threads into this pool ism_threads et via the tf configuratio hat the defa. cores. A com orors rather th	, achieve opt CPU. , Intel® has a low. While the with MKL'. used to optin s : Nodes tha . ConfigProt o options, if f ut is effective umon alterna han logical co	imal performance added support for e name is not co TensorFlow with mize CPU perform at can use multip modes are schedu to and passed to they are unset or e for systems rar tive optimization ores.	e when Tensori r the Intel® Ma mpletely accur: Intel® MKL-DN mance by adjus e threads to pa led in this pool o tf.Session set to 0, will de ging from one is to set the nu	Flow is built from source th Kernel Library for De ate, these optimization: NN contains details on it sting the thread pools. In the config attribute fault to the number of CPU with 4 cores to mu, imber of threads in both	ee with all of sep Neural s are often the MKL n will scheduk e as shown in logical CPU ultiple CPUs h pools equal	e	Contents General best practices Input pipeline optimization Data formats Common fused Ops RNN Performance Building and installing from source Optimizing for CPU TansacFiow with Intel® MKL DNN Comparing compiler optimizations	
			config = t config.int config.int tf.sessior	f.ConfigPr ra_op_para er_op_para (config=co	oto() llelism_thr llelism_thr nfig)	reads = 44 reads = 44				•● [
			The Comparing	compiler op	otimizations	section conta	ains the results o	of tests that use	ed different compiler op	otimizations.			

TensorFlow with Intel® MKL DNN

Intel® has added optimizations to TensorFlow for Intel® Xeon® and Intel® Xeon Phi[™] though the use of Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) optimized primitives. The optimizations also provide speedups for the consumer line of processors, e.g. IS and i7 Intel processors. The Intel published paper TensorFlow* Optimizations on Modern Intel® Architecture contains additional details on the implementation.

https://www.tensorflow.org/performance/performance_guide#tensorflow_with_intel_mkl_dnn

INTEL-OPTIMIZED TENSORFLOW PERFORMANCE AT A GLANCE

TRAINING THROUGHPUT

INFERENCE THROUGHPUT

System configuration:

CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlow Source: https://github.com/tensorflow/tensorflow TensorFlow Commit ID:

Intel-optimized TensorFlow ResNet50 training performance Intel-optimized TensorFlow InceptionV3 inference throughput compared to compared to default TensorFlow for CPU Default TensorFlow for CPU

TensorFlow benchmarks: https://github.com/tensorflow/benchmarks

Inference and training throughput uses FP32 instructions

Unoptimized TensorFlow may not exploit the best performance from Intel CPUs.

Nodel	Data_fo rmat	Intra_ op	Inter_ op	OMP_NUM_ THREADS	KMP_BLOC KTIME
/GG16	NCHW	56	1	56	1
nceptionV3	NCHW	56	2	56	1
ResNet50	NCHW	56	2	56	1

and MobileMark, are measured using specific computer system ormanice tests to assist you in fully evaluating your concerning

INTEL-OPTIMIZED TENSORFLOW TRAINING PERFORMANCE

Training Improvement with Intel-optimized TensorFlow over Default (Eigen) CPU Backend

CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6

Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlowSource:

System configuration:

https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks:

https://github.com/tensorflow/benchmarks

Model	Data_fo rmat	Intra_ op	Inter_ op	OMP_NUM_ THREADS	KMP_BLO CKTIME
VGG16	NCHW	56	1	56	1
InceptionV3	NCHW	56	2	56	1
ResNet50	NCHW	56	2	56	1

Improvement with Intel-optimized TensorFlow (NHWC)
 Improvement with Intel-optimized TensorFlow (NCHW)

INTEL-OPTIMIZED TENSORFLOW INFERENCE PERFORMANCE

Inference Improvement with Intel-optimized TensorFlow over Default (Eigen) CPU Backend

Improvement with Intel-optimized TensorFlow (NHWC)

■ Improvement with Intel-optimized TensorFlow (NCHW)_□

System configuration:

CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlowSource:

https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks:

https://github.com/tensorflow/benchmarks

Model	Data_fo rmat	Intra_ op	Inter_ op	OMP_NUM_ THREADS	KMP_BLO CKTIME
VGG16	NCHW	56	1	56	1
InceptionV3	NCHW	56	2	56	1
ResNet50	NCHW	56	2	56	1

Distributed TensorFlow[™] Compare

The parameter server model for distributed training jobs can be configured with different ratios of parameter servers to workers, each with different performance profiles.

The ring all-reduce algorithm allows worker nodes to average gradients and disperse them to all nodes without the need for a parameter server.

others. Cop

Source: https://eng.uber.com/horovod/

inte

DISTRIBUTED TRAINING : MULTI-NODE MULTI-SOCKET WITH HOROVOD MPI LIB

Interconnect Fabric (OPA or Ethernet)

Run as Distributed Training Across Multiple Nodes & Multiple Sockets

- No Parameter Server required
- Each socket on each worker node running 2 or more Framework Streams
- Internode communication with horovod MPI library

HOROVOD for multinode:

from Parameter server (PS):

ID-1
HOSTLIST=192.168.10.110
1ODEL=inception3
3S=64
BATCHES=100
INTRA=10
INTER=2

/usr/lib64/openmpi/bin/mpirun --allow-run-as-root -np \$NP -cpus-per-proc \$PER_PROC map-by socket -H \$HOSTLIST --report-bindings --oversubscribe -x LD_LIBRARY_PATH python
./tf_cnn_benchmarks.py --model \$MODEL --batch_size \$BS --data_format NCHW num_batches \$BATCHES --distortions=True --mkl=True --local_parameter_device cpu num_warmup_batches 10 --optimizer rmsprop --display_every 10 --kmp_blocktime 1 variable_update horovod --horovod_device cpu --num_intra_threads \$INTRA num_inter_threads \$INTER --data_dir /home/tf_imagenet --data_name_imagenet

Scaling TensorFlow

There is way more to consider when striking for peak performance on distributed deep learning training.:

https://ai.intel.com/white-papers/best-known-methods-forscaling-deep-learning-with-tensorflow-on-intel-xeonprocessor-based-clusters/

WHITE PAPER	(Intel)
Al Deadlante Course Intel Companying	
Customer Solutions Technical Enabling	
costoner solutions recriment endowing	
Bost Dracticos for Scaling Doon Los	arning Training
Dest Flactices for Scaling Deep Let	anning manning
and Informed with ToncorFlow* O	n Intol® Yoon®
and interence with rensorriow O	in inter Aeon
Desserver Desed UDC Infrastructu	
Processor-Based HPC Intrastructu	res
Table of Contents	
1. Best Practices For Tensorflow* On Intel* Xeon* Processors	
1.1 TensorFlow ⁴ Setup and Installation	
1.2 Install MPI, if not already installed	
1.3 Install Uber's Horovod* Library.	
1.4 Installing the ImageNet? 2012-18 Dataset	
1.5.1 Steps to download and prepare the ImageNet Dataset.	
1.5.2 Already have the ImageNet-1K Dataset	
1.5.3 Dataset Striped on Lustre*	
1.6 Example: Running ResNet-50 with tf_cnn_benchmarks	
1.6.1 tf_cnn_benchmarks: ResNet-50	
1.6.2 Training on Single-Node with Multiple Workers.	
1.6.3 Using Open MPI	
1.6.4 Using intel® MPI	
1.6.5 Using MVAPILR2************************************	
1.6.7 Evaluating on Platiple Workers with Platiple Workers	
1.6.8 Multi-Stream Inference on the Trained Model	
2. Using Singularity*	
2.1 Installing Singularity*	
2.2 Building Singularity Image	
2.3 Running TensorFlow With Singularity.	
3. Using Nfs And Slurm*	
3.1 Using NPS Mounted File System	10 10 10 10 10 10 10 10 10 10 10 10 10 1
4. Tensorflow Build Instructions	10
4.1 Building TensorFlow	
4.2 Install TensorFlow using script	
5. Sample Scripts.	
5.1 TensorFlow build script	
5.2 Slurm scripts	
5.3 Singularity scripts	
5.3.1 Install script	
5.3.2 Recipe file for TensorFlow wheel on local file system	
5.3.4 Singularity run-script	28
5.4 inference scripts	
6. Troubleshooting	
6.1 TensorFlow Import Issues	
6.1.1 Importing TensorFlow	
6.1.2 Run ldd to find the dynamically linked libraries	
6.1.3 Check by running:	
6.5.4 Another Common Freezishen Importing TensorFlow	
0.1.4 Milotiter Common Error when importing tensorylow	

-

%

