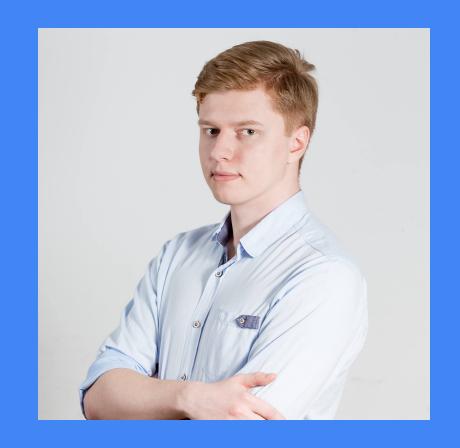
Natural language processing with neural networks.

Hubert Bryłkowski Europython 2019

Hubert Bryłkowski

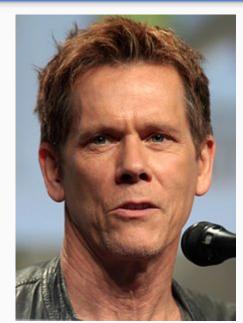
hubert@brylkowski.com linkedin.com/in/hubert-bry%C5% 82kowski/



Why NLP is hard

Ambiguity

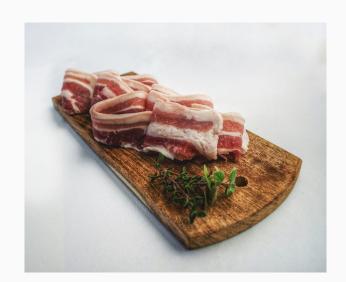
I had a sandwich with Bacon.

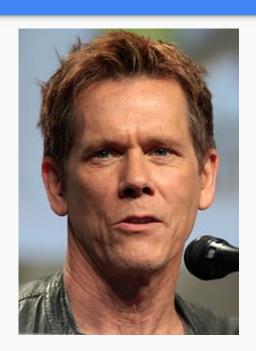


By Gage Skidmore - https://www.flickr.com/photos/gageskidmore/14823923553/, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=34419969

Ambiguity

I had a sandwich with Bacon.





Texts are compositional

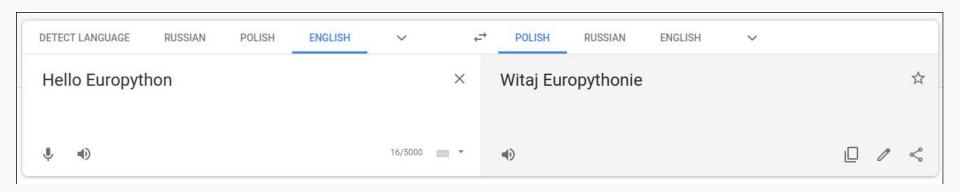
Characters -> words -> sentences -> paragraphs

Common problems in NLP

Document classification (sentiment, author, spam)

Common problems in NLP

Sequence to sequence (translation, summarization, response generation)



Common problems in NLP

Information extraction (named-entity recognition)

Jimmy bought Apple shares.

Jimmy bought an apple

Why neural networks are good for NLP?

"Real" life problem

IMDB sentiment analysis.

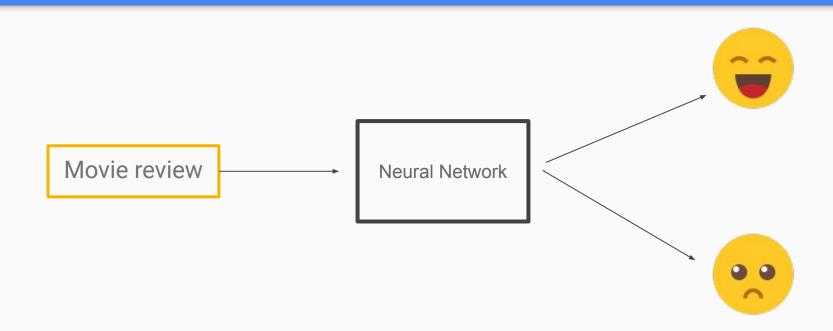
25,000 highly polar movie reviews

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). <u>Learning Word Vectors for Sentiment Analysis.</u> *The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).*

Task definition



Task definition



Text as input

"A big disappointment for what was touted as an incredible film. Incredibly bad. Very pretentious. It would be nice if just once someone would create a high profile role for a young woman that was not (...)"

noun

noun canine

noun canine stem - fox lemma - fox

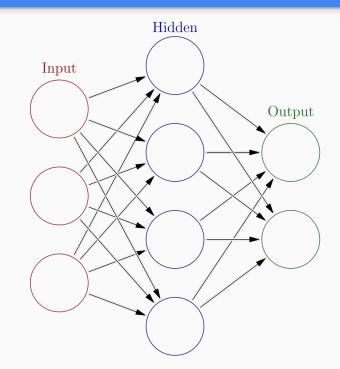
noun
canine
stem - fox
lemma - fox
TFIDF

Bag of words

A quick brown fox.

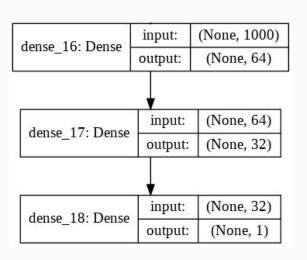
vocab	X
fox	1
brown	1
over	0
quick	1
а	1
jumps	0
dog	0
lazy	0
<unk></unk>	0

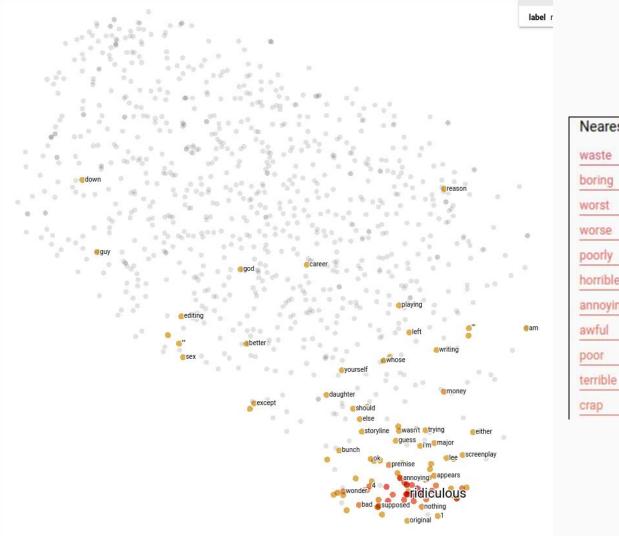
Fully connected neural network



By Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/ index.php?curid=24913461

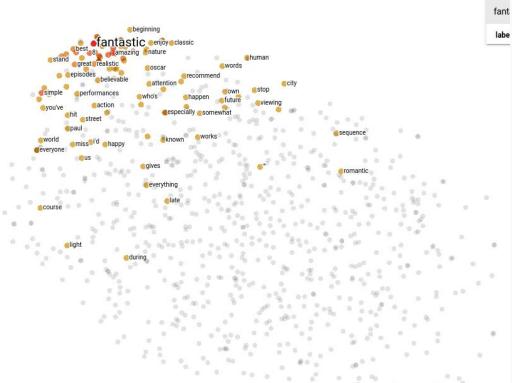
Simple model





Nearest points in the original space: 0.255 waste 0.298 boring 0.301 worst 0.309 worse 0.311 poorly horrible 0.336 0.339 annoying awful 0.347 0.356 poor 0.361

0.377



 Nearest points in the original space:

 excellent
 0.306

 7
 0.371

 simple
 0.403

 8
 0.407

 amazing
 0.409

 favorite
 0.413

 today
 0.442

 highly
 0.444

0.458

wonderful

superb

Pros and cons of FC with BoW

- Simple cheap and fast to train
- Always looking at whole text
- Kinda interpretable

- Can't get close to state of the art
- Order of words do not matter

Bag of words

I loved the movie, but cinema was terrible.

I loved cinema, but the movie was terrible.

A quick brown fox.

vocab	X			
fox	0	0	0	1
brown	0	0	1	0
over	0	0	0	0
quick	0	1	0	0
а	1	0	0	0
jumps	0	0	0	0
dog	0	0	0	0
lazy	0	0	0	0
<unk></unk>	0	0	0	0

A quick brown vixen.

vocab	X			
fox	0	0	0	0
brown	0	0	1	0
over	0	0	0	0
quick	0	1	0	0
а	1	0	0	0
jumps	0	0	0	0
dog	0	0	0	0
lazy	0	0	0	0
<unk></unk>	0	0	0	1

A quick brown vixen.

vocab	X			
fox	0	0	0	0
brown	0	0	1	0
over	0	0	0	0
quick	0	1	0	0
а	1	0	0	0
jumps	0	0	0	0
dog	0	0	0	0
lazy	0	0	0	0
<noun></noun>	0	0	0	1
<adj></adj>	0	0	0	0

Input (5000) **Dense** (64) Dense (32) Dense (1)

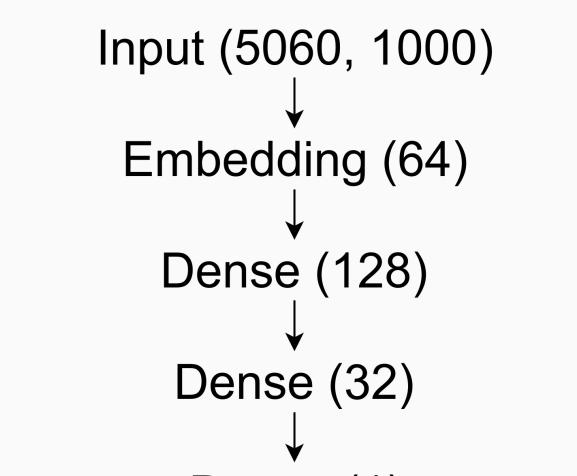
A quick brown vixen.

vocab	X			
fox	0	0	0	0
brown	0	0	1	0
over	0	0	0	0
quick	0	1	0	0
а	1	0	0	0
lazy	0	0	0	0
<unk></unk>	0	0	0	1
<noun></noun>	0	0	0	1
<adj></adj>	0	1	1	0
<det></det>	1	0	0	0

Sequence of embeddings

A quick brown vixen.

vocab	X			
word	0.01	0.84	-0.54	0.03
	0.18	0.96	-0.45	0.98
	-0.63	-0.21	-0.82	-0.60
	0.94	-0.37	0.72	0.69
Part of speech	0.20	-0.38	0.90	0.11
	0.43	0.70	-0.91	-0.97



Dense (1)

Pros and cons of FC with sequence

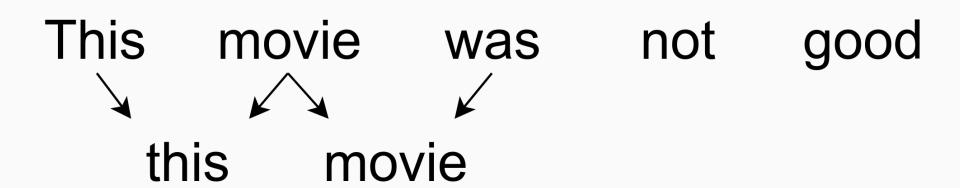
- Still simple cheap and fast to train
- Order of words matter
- Kinda interpretable

- Can't get close to state of the art (0.96 -GraphStar)
- Words at given position matter more
- Negations are hard to catch

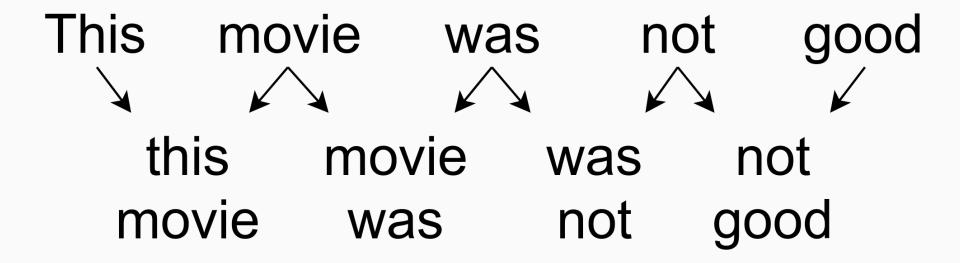
<u>Deep learning course - Andrew Ng</u>

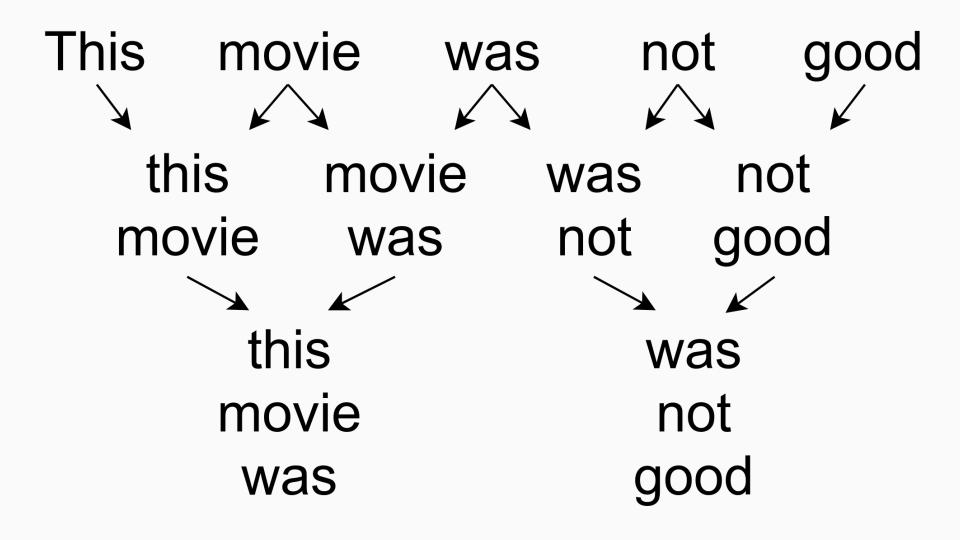
Convolutional Neural Networks - CNNs

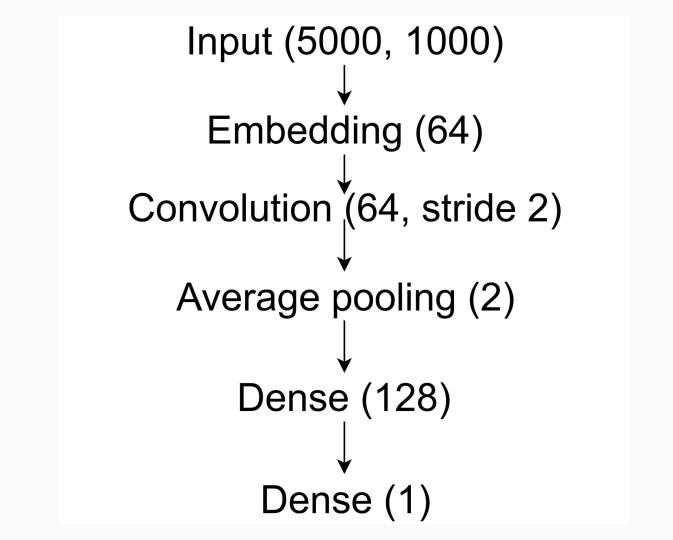
This movie was not good this movie



movie was







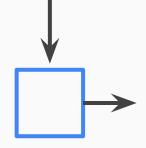
Pros and cons of CNNs

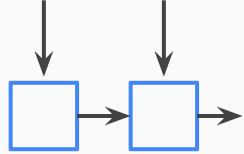
- Parallelize nicely inference can be fast
- Order of words matter
- Positions of words matter
- We can look at whole sentence

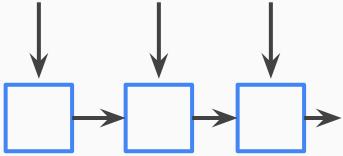
 Connections can only be made between close neighbours

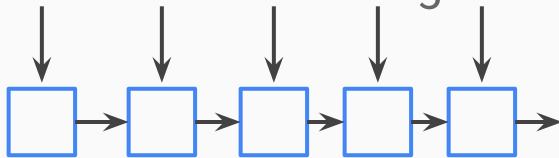
<u>Understanding Convolutional Neural Networks for NLP - DENNY BRITZ</u>

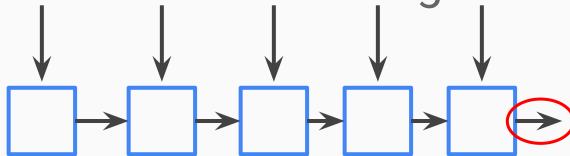
Recurrent Neural Networks - RNNs

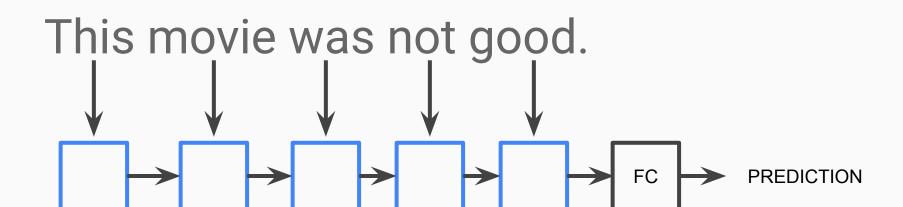






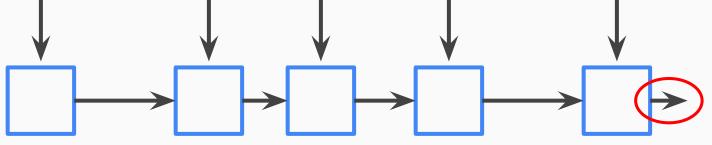




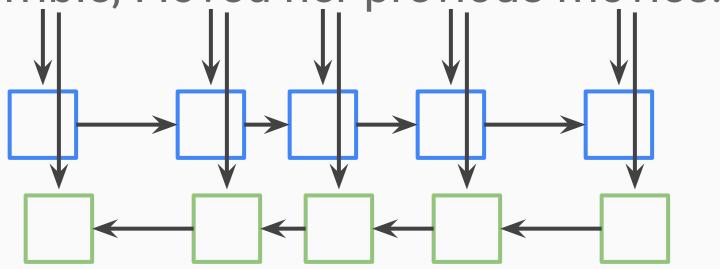


This movie was not good. **PREDICTION**

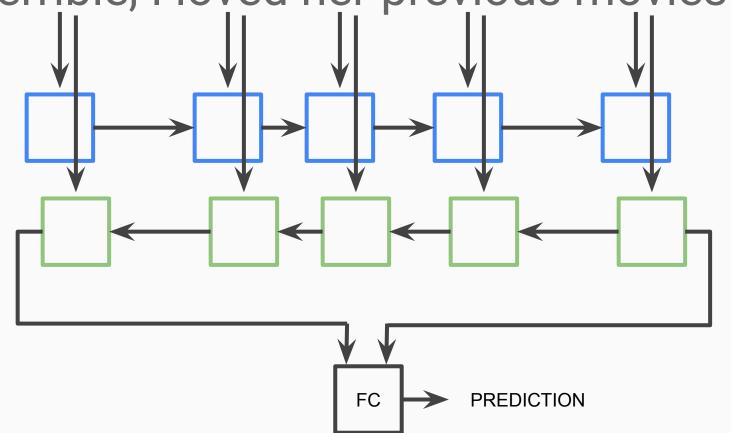
Terrible, I loved her previous movies.



Terrible, I loved her previous movies.



Terrible, I loved her previous movies.



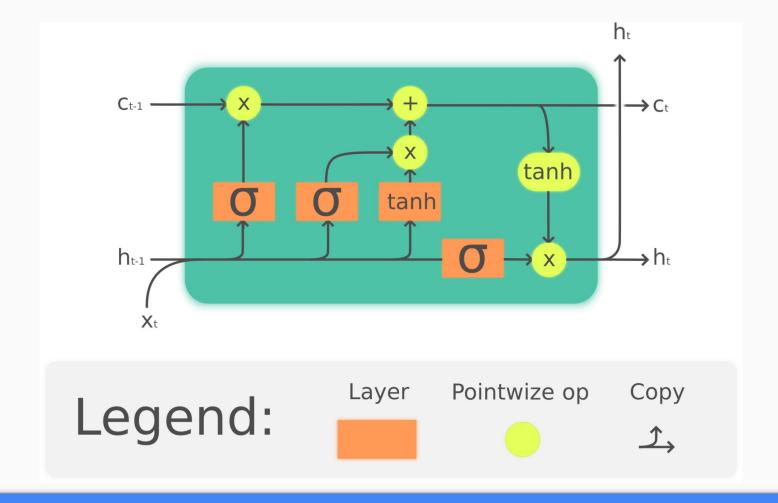
Pros and cons of simple RNNs

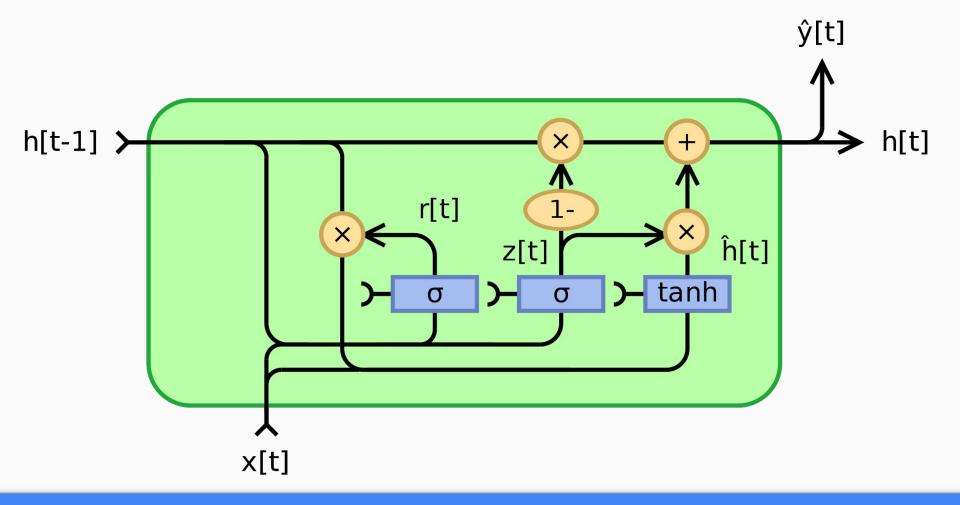
- Can give better results
- We look at whole sequence

- Hard to train a lot of resources and time needed
- Prone to "forgetting" words from beginning (or end) of sequence

Stanford lecture Recurrent Neural Networks and Language Models

LSTM / GRU





Pros and cons of LSTM / GRU

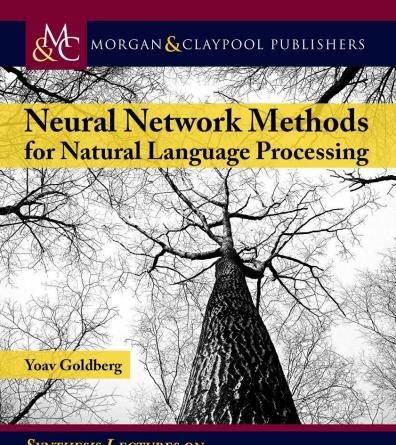
- Can give best results
- Always look at whole sequence
- Can "remember" the words from beginning
- Hardest to train a lot of resources and time needed
- Not counting transformer best models

Stanford lecture Machine Translation and Advanced Recurrent LSTMs and GRUs Understanding LSTM Networks

Summary

architecture	accuracy	1 epoch time
fully Connected with bow	0.89	2s
fully connected - embeddings	0.89	1s
fully connected - pos instead unk	0.88	5s
fully connected - pos embeddings	0.88	3s
simple RNN - embeddings	0.85	42s
simple biRNN - embeddings	0.87	137s
LSTM	0.88	137s

https://colab.research.google.com/drive/1J3VyPNiLQ-SpA_HBw29HRjv8Oa1Ls3zJ



Synthesis Lectures on Human Language Technologies

Graeme Hirst, Series Editor

Thank you

hubert@brylkowski.com

linkedin.com/in/hubert-bry%C5%82kowski/