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Why NLP is hard



Ambiguity

| had a sandwich with Bacon.

By Gage Skidmore - https://www.flickr.com/photos/gageskidmore/14823923553/, CC BY-SA 2.0,
https://commons.wikimedia.org/w/index.php?curid=34419969



Ambiguity

| had a sandwich with Bacon.




Texts are compositional

Characters -> words -> sentences -> paragraphs
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INntfroduction
to senfiment analysis with spaCy

Thomas Aglassinger

https://www.youtube.com/watch?v=LvIUBxi_JEg



Common problems in NLP

Document classification (sentiment, author, spam)




Common problems in NLP

Sequence to sequence (translation, summarization, response generation)
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Common problems in NLP

Information extraction (nhamed-entity recognition)
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Why neural networks are good for
NLP?



“Real” life problem



IMDB sentiment analysis.

25,000 highly polar movie reviews

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011).
Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics
(ACL 2011).



https://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf

Task definition

Movie review

Neural Network




Task definition

Movie review

Neural Network




Text as input

“A big disappointment for what was touted as an incredible film. Incredibly bad.
Very pretentious. It would be nice if just once someone would create a high
profile role for a young woman that was not (...)"



Possible features

A quick brown fox.



Possible features

A quick brown fox.



Possible features

A quick brown fox.
noun




Possible features

A quick brown fox.

noun
canine




Possible features

A quick brown fox.

noun
canine
stem - fox
lemma - fox




Possible features

A quick brown fox.

noun
canine
stem - fox
lemma - fox
TFIDF




Bag of words

A quick brown fox.

vocab

fox

brown

over

quick

a

jumps

dog

lazy

<UNK>
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Fully connected neural network

By Glosser.ca - Own work,
Derivative of File:Artificial neural
network.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/
index.php?curid=24913461



Simple model

input: | (None, 1000)

dense_16: Dense
output: [ (None, 64)

input: | (None, 64)
output: | (None, 32)

dense_17: Dense

input: | (None, 32)
output: | (None, 1)

dense_18: Dense
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Pros and cons of FC with BoW

e Simple - cheap and fast to train e Can't get close to state of the art
e Always looking at whole text e Order of words do not matter
e Kinda interpretable



Bag of words

| loved the movie, but cinema was terrible.

| loved cinema, but the movie was terrible.



Sequence of one-hot vectors

A quick brown fox.

vocab

X

fox

brown

over

quick

a

jumps

dog

lazy

<UNK>
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Sequence of one-hot vectors

vocab X
fox 0(0(0|0
brown [0[{0(1|0
over 0(0|0]|0
quick 0(1(0|0
A quick brown vixen. a 1/0]0]0
jumps |0(0(0]|0
dog 0(0|0]|0
lazy 0(0(0|0
<UNK> (00|01




Sequence of one-hot vectors

A quick brown vixen.
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Input (5000)

'
Dense (64)

'
Dense (32)

'
Dense (1)



Sequence of one-hot vectors

vocab X

fox

brown

over

quick
A quick brown vixen. |a
azy
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Sequence of embeddings

A quick brown vixen.

vocab X
0.01| 0.84-0.54| 0.03
0.18| 0.96|-0.45| 0.98
word
-0.63-0.21(-0.82(-0.60
0.94|-0.37| 0.72| 0.69
Part of 0.20{-0.38| 0.90| 0.11
speech
0.43| 0.70(-0.91|-0.97




Input (5060, 1000)

'
Embedding (64)

|
Dense (128)

'
Dense (32)

'
Dense (1)



Pros and cons of FC with sequence

e Still simple - cheap and fast to train e Can't get close to state of the art (0.96 -
e Order of words matter GraphStar)
e Kinda interpretable e Words at given position matter more

e Negations are hard to catch

Deep learning course - Andrew Ng



https://www.deeplearning.ai

This movie was not good.



This movie was not_good.



Convolutional Neural Networks -
CNNs



This movie was not good



This movie was not good
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Input (5000, 1000)

|

Embedding (64)

Convolution

\/

(64, stride 2)

\4

Average pooling (2)

Dense (128)

!

Dense (1)



Pros and cons of CNNs

Parallelize nicely - inference can be fast e Connections can only be made between
Order of words matter close neighbours

Positions of words matter

We can look at whole sentence

Understanding Convolutional Neural Networks for NLP - DENNY BRITZ



http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Recurrent Neural Networks -
RNNs



This movie was not good.
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This movie was not good.
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This movie was not good.
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This movie was not good.

I T
g Bl o B I S



This movie was not good.
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This movie was not good.
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Terrible, | loved her previous movies.

I T T T
I g Bl o Bl e Bl K



Terrible, | loved her previous movies.
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Pros and cons of simple RNNs

e (Can give better results e Hard to train - a lot of resources and time

e Welook at whole sequence needed
e Prone to “forgetting” words from
beginning (or end) of sequence

Stanford lecture Recurrent Neural Networks and Lanqguage Models



https://www.youtube.com/watch?v=Keqep_PKrY8

LSTM / GRU
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By Guillaume Chevalier - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=71836793
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By Jeblad - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=66225938



Pros and cons of LSTM / GRU

e (Can give best results e Hardest to train - a lot of resources and
e Always look at whole sequence time needed
e Can “remember” the words from beginning e Not counting transformer - best models

Stanford lecture Machine Translation and Advanced Recurrent LSTMs and GRUs
Understanding LSTM Networks



https://www.youtube.com/watch?v=QuELiw8tbx8
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Summary

architecture accuracy 1 epoch time
fully Connected with bow 0.89 2s

fully connected - embeddings 0.89 1s

fully connected - pos instead unk 0.88 5s

fully connected - pos embeddings 0.88 3s

simple RNN - embeddings 0.85 42s

simple biRNN - embeddings 0.87 137s

LSTM 0.88 137s

https://colab.research.qoogle.com/drive/1J3VyPNiLQ-SpA HBw29HRjv80a1lLs3zJ



https://colab.research.google.com/drive/1J3VyPNiLQ-SpA_HBw29HRjv8Oa1Ls3zJ
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Thank you

hubert@brylkowski.com
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