

INTEL AI WORKSHOP

Shailen Sobhee - Technical Consulting Engineer Intel Architecture, Graphics and Software (IAGS) Note: All slides in this slide deck were unhidden. During the three-hours of presentation, a select number of these slides that were relevant to the target audience were presented.

I am providing the entirety of the material for your own convenience.

Happy reading ©

Legal Disclaimer & Optimization Notice

Performance results are based on testing as of September 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Optimization Notice

LEGAL NOTICES & DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon, Movidius and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation.

Intel AI Workshop Agenda

Introduction to Intel Software Developer Tools

- We will go quickly through them
- Intel Distribution for Python
 - Hands-on exercises (NumPy, Numba, performance considerations)
 - Classical Machine learning (scikit-learn)

INTRODUCTION TO INTEL SOFTWARE DEVELOPER TOOLS

Intel[®] Parallel Studio XE

Intel[®] Parallel Studio XE—Overview

Build Fast, Scalable Parallel Applications from Enterprise to Cloud & HPC to AI

What is it?

A comprehensive tool suite for building highperformance, scalable parallel code from enterprise to cloud, and HPC to AI applications.

- Includes C++, Fortran, & Python performance tools: industry-leading compilers, numerical libraries, performance profilers, & code analyzers
- Supports Windows*, Linux* & macOS*

Who needs this product?

- OEMs/ISVs
- C++, Fortran, & Python* developers
- Developers, domain specialists of enterprise, data center/ cloud, HPC & AI applications

Why important ?

- Accelerate performance on Intel[®] Xeon[®] & Core[™] processors
- Deliver fast, scalable, reliable parallel code with less effort
- Modernize code efficiently—optimize for today's & future Intel[®] platforms
- Stay up-to-date with standards

Free 30-Day Trial—Download: software.intel.com/intel-parallel-studio-xe

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Certain technical specifications and select processors/skus apply. See product site for details.

Accelerate Parallel Code

Intel® Parallel Studio XE Capabilities

Build Fast, Scalable Parallel Applications from Enterprise to Cloud & HPC to AI

- Take advantage capabilities & performance on the latest Intel[®] platforms. Simplify modernizing code with proven techniques in vectorization, multi-threading, multi-node & memory optimization.
- Boost application performance, accelerate diverse workloads and machine learning with industry-leading compilers, libraries, and Intel[®] Distribution for Python*.
- Increase developer productivity—quickly spot high-payoff opportunities for faster code.
 - View memory, network, storage, MPI, CPU, and FPU usage with Application Performance Snapshots. Interactively build, validate algorithms with Flow Graph Analyzer. Find high-impact, under-performing loops with Roofline Analysis.
 - Use in popular development environments—profile enterprise applications inside Docker* and Mesos* containers, and running Java* services and daemons.
- Extend HPC solutions on the path to Exascale—gain scalability, reduce latency with Intel® MPI Library.
- Take advantage of Priority Support—get more from your code, overcome development challenges. Connect privately with Intel engineers for quick answers to technical questions.¹

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

8

What's Inside Intel® Parallel Studio XE

Comprehensive Software Development Tool Suite

COMPOSER EDITION	PROFESSIONAL EDITION	CLUSTER EDITION
BUILD Compilers & Libraries	ANALYZE Analysis Tools	SCALE Cluster Tools
Intel® Math Kernel Library C / C++, Fortran Compilers Intel® Data Analytics Acceleration Library Intel Threading Building Blocks C++ Threading Intel® Integrated Performance Primitives Image, Signal & Data Processing Intel® Distribution for Python* High Performance Python	Intel® VTune™ Amplifier Performance Profiler Intel® Inspector Memory & Thread Debugger Intel® Advisor Vectorization Optimization Thread Prototyping & Flow Graph Analysis	Intel® MPI Library Message Passing Interface Library Intel® Trace Analyzer & Collector MPI Tuning & Analysis Intel® Cluster Checker Cluster Diagnostic Expert System
perating System: Windows*, Linux*, MacOS ^{1*} htel® Architecture Platforms		(intel) CORE inside

¹Available only in the Composer Edition.

Optimization Notice

HPC & AI Software Optimization Success Stories Intel® Parallel Studio XE

SCIENCE & RESEARCH

Up to 35X faster application performance

NERSC (National Energy Research Scientific Computing Center)

Read case study

ARTIFICIAL INTELLIGENCE

Performance speedup of up to 23X faster with Intel optimized scikit-learn vs. stock scikit-learn Google Cloud Platform **LIFE SCIENCE**

Simulations ran up to 7.6X faster with 9X energy efficiency**

LAMMPS code - Sandia National Laboratories

Read technology brief

For more success stories, review Intel® Parallel Studio XE Case Studies

**Intel® Xeon Phi™ Processor Software Ecosystem Momentum Guide

Performance results are based tests from 2016-2017 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations & functions. Any change to any of those factors may cause the results to vary. You should consult other information & performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to <u>www.intel.com/performance</u>. See configurations in individual case study links. Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors. Certain optimizations not specific to intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804. For more complete information about compiler optimizations, see our <u>Optimizations Notice</u>.

Optimization Notice

Take Advantage of Intel Priority Support

Paid licenses of Intel[®] Software Development Tools include Priority Support for one year from your date of purchase, with options to extend support at a highly discounted rate.

Benefits

- Performance & productivity—get the most from your code on Intel hardware, and overcome performance bottlenecks or development challenges.
- **Direct, private** interaction with Intel engineers. Submit confidential inquiries & code samples for consultation.
- Responsive help with your technical questions & other product needs.
- Free access to all new product updates & access to older versions.

Additional Resources

- Learn from other experts via community product forums
- Access to a vast library of self-help documents that build off decades of experience with creating high performance code.

Optimization Notice

INTEL® PARALLEL STUDIO XE TOOLS DETAILS

BUILD

Intel® C++ Compiler Intel® Fortran Compiler Intel® Distribution for Python* Intel® Math Kernel Library Intel® Integrated Performance Primitives Intel® Threading Building Blocks Intel® Data Analytics Acceleration Library Included in Composer Edition

ANALYZE

Intel® VTune™ Amplifier Intel® Advisor Intel® Inspector

Part of the Professional Edition

SCALE

Intel® MPI Library Intel® Trace Analyzer & Collector Intel® Cluster Checker

Part of the Cluster Edition

What's New in Intel[®] Compilers 2019 (19.0)

Updates to All Versions

Advance Support for Intel[®] Architecture—use Intel[®] Compilers to generate optimized code for Intel Atom[®] processor through Intel[®] Xeon[®] Scalable processors.

Achieve Superior Parallel Performance—vectorize & thread your code (using OpenMP*) to take advantage of the latest SIMD-enabled hardware, including Intel[®] Advanced Vector Extensions 512 (Intel[®] AVX-512).

What's New in C++

Additional C++17 Standard feature support

- Enjoy improvements to lambda & constant expression support
- Improved GNU C++ & Microsoft C++ compiler compatibility

Standards-driven parallelization for C++ developers

- Partial OpenMP* 5¹ support
- Modernize your code by using the latest parallelization specifications

What's New in Fortran

Substantial Fortran 2018 support including

- Coarray features: EVENTS & COSHAPE
- IMPORT statement enhancements
- Default module accessibility

Complete OpenMP 4.5 support; user-defined reductions

Check shape option for runtime array conformance checking

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹OpenMP 5 is currently a draft

Industry-leading Application Performance on Linux* using Intel® C++ & Fortran Compilers (higher is better)

Boost C++ Application Performance on Linux* using Intel[®] C++ Compiler

Boost Fortran Application Performance on Linux* using Intel® Fortran Compiler

Estimated relative geomean performance, Polyhedron* benchmark– higher is better

Performance results are based on testing as of Aug. 26, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, see <u>Performance Benchmark Test Disclosure</u>

Testing by Intel as of Aug. 26, 2018. Configuration: Linux hardware: Intel(R) Yeon(R) Platinum 8180 CPU @ 2.50GHz, 384 GB RAM, HyperThreading is on. Software: Intel compilers 19.0, GCC 8.1.0. PGI 18.5, Clang/LL/W 6.0. Linux OS: Red Hat Enterprise Linux Server release 7.4 (Maipo), 3.10.0-693.el7.x86 64. SPEC* Benchmark (<u>www.spec.org</u>). SmartHeap 10 was used for CXX tests when measuring SPECInt* benchmarks.SPECInt*_rate_base_2017 compiler switches: SmartHeap 10 were used for CXX tests when function of the set of

Testing by Intel as of Aug. 26, 2018. Configuration: Hardware: Intel® Core[™] i7-8700K CPU @ 3.70GHz, 64 GB RAM, HyperThreading is on. Software: Intel Fortran compiler 19.0, PGI Fortran* 18.5, gFortran* 8.1.0. Linux OS: Red Hat Enterprise Linux Server release 7.4 (Maipo), 3.10.0-693.el7.x86_64 Polyhedron Fortran Benchmark (www.fortran.uk). Linux compiler switches: Gfortran: -Ofast -mfpmath=sse -flto -march=haswell -furroll-loops -ftree-parallelize-loops=6. Intel Fortran compiler: -fast -parallel -xCORE-AVX2 -nostandardrealloc-lhs. PGI Fortran: -fast -Mipa=fast,inline -Msmartalloc -Mfprelaxed -Mstack_arrays -Mconcur=bind -tp haswell.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microprocet processors. These optimizations include are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804, For more complete information about compiler optimizations, see our <u>Cotimization Notice</u>.

Accelerate Python* with Intel® Distribution for Python*

High Performance Python* for Scientific Computing, Data Analytics, Machine & Deep Learning

	FASTER PERFORMANCE	GREATER PRODUCTIVITY	ECOSYSTEM COMPATIBILITY					
I	Performance Libraries, Parallelism, Multithreading, Language Extensions	Prebuilt & Accelerated Packages	Supports Python 2.7 & 3.x, Conda & PIP					
W = C la T = S = Ir C	Accelerated NumPy/SciPy/scikit-learn with Intel® MKL ¹ & Intel® DAAL ² Data analytics, machine learning & deep earning with scikit-learn, pyDAAL, TensorFlow* & Caffe* Scale with Numba* & Cython* ncludes optimized mpi4py, works with Dask* & PySpark*	 Prebuilt & optimized packages for numerical computing, machine/deep learning, HPC, & data analytics Drop in replacement for existing Python- No code changes required Jupyter* notebooks, Matplotlib included Free download & free for all uses including commercial deployment 	 Supports Python 2.7 & 3.x, optimizations integrated in Anaconda* Distribution Distribution & optimized packages available via Conda, PIP, APT GET, YUM, & DockerHub, numerical performance optimizations integrated in Anaconda Distribution Optimizations upstreamed to main Python trunk Priority Support with Intel® Parallel Studio XE 					
	perating System: Windows*, Linux*, Macontel® Architecture Platforms	OS ¹ *	(intel) CORE indde					

¹Intel[®] Math Kernel Library ²Intel[®] Data Analytics Acceleration Library

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

¹Available only in Intel[®] Parallel Studio Composer Edition.

Learn More: software.intel.com/distribution-for-python

Faster Python* with Intel® Distribution for Python*

Advance Performance Closer to Native Code

- Accelerated NumPy, SciPy, Scikit-learn for scientific computing, machine learning & data analytics
- Drop-in replacement for existing Python—no code changes required
- Highly optimized for the latest Intel[®] processors

What's New in the 2019 Release

- Faster machine learning with Scikit-learn: Support Vector Machine (SVM) & K-means prediction, accelerated with Intel[®] Data Analytics Acceleration Library
- Includes machine learning XGBoost library (Linux* only)
- Also available as easy command line standalone install

Close to Native Code Scikit-learn* Performance with Intel® Distribution for Python* 2019 Compared to stock Python packages on Intel® Xeon® processors

Performance results are based on testing as of July 9, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, see <u>Performance Benchmark Test Disclosure</u>. Testing by Intel as of July 9, 2018. **Configuration:** Stock Python: python 3.6.6 hc3d631a_0 installed from conda, NumPy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip; Intel Python: Intel® Distribution for Python* 2019 Gold: python 3.6.5 intel_11, NumPy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6, mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM. 16 DIMMs of 16 GB@2666MHz

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. <u>Notice revision #20110804</u>. For more complete information about compiler optimizations, see our Optimization Notice.

Fast, Scalable Code with Intel[®] Math Kernel Library (Intel[®] MKL)

- Speeds computations for scientific, engineering, financial and machine learning applications by providing highly optimized, threaded, and vectorized math functions
- Provides key functionality for dense and sparse linear algebra (BLAS, LAPACK, PARDISO), FFTs, vector math, summary statistics, deep learning, splines and more
- Dispatches optimized code for each processor automatically without the need to branch code
- Optimized for single core vectorization and cache utilization
- Automatic parallelism for multi-core and many-core
- Scales from core to clusters
- Available at no cost and royalty free
- Great performance with minimal effort!

Optimization Notice

What's New in Intel[®] Math Kernel Library 2019?

Just-In-Time Fast Small Matrix Multiplication

Improved speed of S/DGEMM for Intel® AVX2 and Intel® AVX-512 with JIT capabilities

Sparse QR Solvers

 Solve sparse linear systems, sparse linear least squares problems, eigenvalue problems, rank and null-space determination, and others

Generate Random Numbers for Multinomial Experiments

 Highly optimized multinomial random number generator for finance, geological and biological applications

Speed Imaging, Vision, Signal, Security & Storage Apps with Intel[®] Integrated Performance Primitives (Intel[®] IPP)

Accelerate Image, Signal, Data Processing & Cryptography Computation Tasks

- Multi-core, multi-OS and multi-platform ready, computationally intensive & highly optimized functions
- Use high performance, easy-to-use, production-ready APIs to quickly improve application performance
- Reduce cost & time-to-market on software development & maintenance

What's New in 2019 Release

- Functions for ZFP floating-point data compression to help tackle large data storage challenges, great for oil/gas applications
- Optimization patch files for the bzip2 source 1.0.6
- Improved LZ4 compression & decompression performance on high entropy data
- New color conversion functions for convert RBG images to CIE Lab color models, & vice versa
- Extended optimization for <u>Intel® AVX-512</u> & <u>Intel® AVX2</u> instruction set
- Open source distribution of Intel[®] IPP Cryptography Library

Learn More: software.intel.com/intel-ipp

19

Optimization Notice

What's Inside Intel[®] Integrated Performance Primitives

High Performance, Easy-to-Use & Production Ready APIs

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹Available only in Intel[®] Parallel Studio Composer Edition.

Get the Benefits of Advanced Threading with Threading Building Blocks

Use Threading to Leverage Multicore Performance & Heterogeneous Computing

- Parallelize computationally intensive work across CPUs, GPUs & FPGAs,—deliver higher-level & simpler solutions using C++
- Most feature-rich & comprehensive solution for parallel programming
- Highly portable, composable, affordable, approachable, future-proof scalability

What's New in 2019 Release

- New capabilities in Flow Graph improve concurrency & heterogeneity through improved task analyzer & OpenCL* device selection
- New templates to optimize C++11 multidimensional arrays
- C++17 Parallel STL, OpenCL*, & Python* Conda language support
- Expanded Windows*, Linux*, Android*, MacOS* support

Learn More: software.intel.com/intel-tbb

What's Inside Threading Building Blocks

Optimization Notice

Heterogeneous Support

Threading Building Blocks (TBB)

TBB flow graph as a coordination layer for heterogeneity—retains optimization opportunities & composes with existing models

CPUs, integrated GPUs, etc.

Threading Building Blocks OpenVX* OpenCL* COI/SCIF

TBB as a composability layer for library implementations

• One threading engine *underneath* all CPU-side work

TBB flow graph as a coordination layer

- Be the glue that connects heterogeneous hardware & software together
- Expose parallelism between blocks—simplify integration

Speedup Analytics & Machine Learning with Intel[®] Data Analytics Acceleration Library (Intel[®] DAAL)

- Highly tuned functions for classical machine learning & analytics performance from datacenter to edge running on Intel[®] processor-based devices
- Simultaneously ingests data & computes results for highest throughput performance
- Supports batch, streaming & distributed usage models to meet a range of application needs
- Includes Python*, C++, Java* APIs, & connectors to popular data sources including Spark* & Hadoop

What's New in the 2019 Release

New Algorithms

- Logistic Regression, most widely-used classification algorithm
- Extended Gradient Boosting Functionality for inexact split calculations & user-defined callback canceling for greater flexibility
- User-defined Data Modification Procedure supports a wide range of feature extraction & transformation techniques

Learn More: software.intel.com/daal

Algorithms, Data Transformation & Analysis

Intel® Data Analytics Acceleration Library

Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Algorithms & Machine Learning Intel[®] Data Analytics Acceleration Library Logistic Ridge Linear Regression Regression Regression Regression **K-Means Decision Forest** Clustering Unsupervised Supervised Learning EM for **Decision Tree** Learning GMM Boosting (Ada, Brown, Logit) Naïve Classification Weak Bayes Neural Networks Learner Collaborative k-NN Alternating Filtering Least Squares Support Vector Machine Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

INTEL® PARALLEL STUDIO XE Component tools

BUILD

Intel® C++ Compiler Intel® Fortran Compiler Intel® Distribution for Python* Intel® Math Kernel Library Intel® Integrated Performance Primitives Intel® Threading Building Blocks Intel® Data Analytics Acceleration Library Included in Composer Edition

ANALYZE

Intel® VTune™ Amplifier Intel® Advisor Intel® Inspector

Part of the Professional Edition

SCALE

Intel® MPI Library Intel® Trace Analyzer & Collector Intel® Cluster Checker

Part of the Cluster Edition

Analyze & Tune Application Performance & Scalability with Intel[®] VTune[™] Amplifier—Performance Profiler

Ar	alysis Configuration Collect	ion Log	Summary	Bottom-	up Call	er/Callee	Top-down 1	Free Plat	form				
Gro	uping: Function / Call Stack									~ <u>*</u> [2]	ę,		
		CPU Time 🔻						Context S	Context Swite				
	Function / Call Stack	Effective Time by Utilization			Spin Time Overhead		Wait Time	Inactive Time	Preemption				
r u	pdateBusinessAccount	7.915s				0s	0s	0s	0.055s	934	Į		
Ŧ	main\$omp\$parallel_for@269	7.915s				0s	0s	0s	0.055s	934			
	Kmp_invoke_microtas	7.915s				0s	0s	0s	0.042s	815			
	updateBusinessAccount	t Os				Os	0s	Os	0.013s	119	I.		
u	pdateCustomerAccount	7.766s				0s	0s	0s	0.052s	1,111			
_kmpc_atomic_fixed8_add 2.772s						0s	0s						
_	_kmpc_critical	0s				2.021s	0s	0s	0.014s	262			
2	>	<								>	l		
	p: 🕇 🗕 🖝 🖻	5s	5.2s	5.4s	5.6s	5.8s	6s 6.		Thread	~	,		
8	OMP Worker Thread #2 (TI	النظر المراب	ليتر الله ورعان	السبب بيها	المحفظ التو		المغاسسا	11.11.	Runr	ning			
	OMP Worker Thread #3 (TI		he is the dist		a line at		1 11 1 1	1.44	Context Switches				
F	rtmtest_openmp (TID: 12732)	an and an								emption			
F	OMP Worker Thread #1 (TI	ومريا وكالعا	444 4 44 4 44 4		and the second	al a l a l a l a l a l a l a l a l a	and an all the part of the	,		nchronization			
		بالغياه بواهيم	يغد البناريات ف	ater de de char	<u>، رياسليهان،</u>	ىن يېرىمىغانلىن ا	فليعلقب إربقا	× ينعيلين		CPU Time Spin and Overh			
	CPU Time	هدان میآنی ح	متم لا تقريف من	يحيدهم أسترقيه	يتعييمك أتعين	ولحمد فيقصاه أميع ورقي	والمرور والمحمد والمحاف	<u></u>		CLK UNH			

Learn More: software.intel.com/intel-vtune-amplifier-xe

Save Time Optimizing Code

- Accurately profile C, C++, Fortran*, Python*, Go*, Java*, or any mix
- Optimize CPU, threading, memory, cache, storage & more
- Save time: rich analysis leads to insight

What's New in 2019 Release (partial list)

- Enhanced Application Performance Snapshot: Focus on useful data with new data selection & pause/resume options (Linux*)
- Analyze CPU utilization of physical cores
- Improved JIT profiling for server-side/cloud applications
- A more accessible user interface provides a simplified profiling workflow

Rich Set of Profiling Capabilities for Multiple Markets

Intel[®] VTune Amplifier

Optimization Notice

INTEL VTUNE AMPLIFIER 2019 Find your analysis direction Hotspots Want to find out where your app spends time and optimize your algorithms? Hotspots

What's New for 2019?

Intel[®] VTune Amplifier

New, Simplified Setup, More Intelligible Results New Platform Profiler – Longer Data Collection

- Find hardware configuration issues
- Identify poorly tuned applications

Smarter, Faster Application Performance Snapshot

- Smarter: CPU utilization analysis of physical cores
- Faster: Lower overhead, data selection, pause/resume

Added Cloud, Container & Linux .NET Support

- JIT profiling on LLVM* or HHVM PHP servers
- Java* analysis on OpenJDK 9 and Oracle* JDK 9
- .NET* support on Linux* plus Hyper-V* support

SPDK & DPDK I/O Analysis - Measure "Empty" Polling Cycles

Balance CPU/FPGA Loading

Additional Embedded OSs & Environments

Microarchitecture

Want to see how efficiently

your code is using the

underlying hardware?

Microarchitecture

Exploration n

Better, Faster Application Performance Snapshot Intel® VTune™ Amplifier

Better Answers

CPU utilization analysis of physical cores

Less Overhead

- Lower MPI trace overhead & faster result processing
- New data selection & pause/resume let you focus on useful data

Easier to Use

- Visualize rank-to-rank & node-to-node MPI communications
- Easily configure profiling for Intel[®] Trace Analyzer & Collector

Tune Workloads & System Configuration

Intel[®] VTune Amplifier

Finds

- Configuration issues
- Poorly tuned software

Target Users

- Infrastructure Architects
- Software Architects & QA

- Extended capture (minutes to hours)
- Low overhead coarse grain metrics
- Sampling OS & hardware performance counters
- RESTful API for easy analysis by scripts

Timelines & Histograms

Core to Core Comparisons

Memory Ops Per Instruction (average/core)

Loads Stores

Optimization Notic

Modernize Your Code with Intel[®] Advisor

Optimize Vectorization, Prototype Threading, Create & Analyze Flow Graphs

Modern Performant Code

- Vectorized (uses Intel[®] AVX-512/AVX2)
- Efficient memory access
- Threaded

Capabilities

- Adds & optimizes vectorization
- Analyzes memory patterns
- Quickly prototypes threading

New for 2019 Release (partial list)

- Enhanced hierarchical roofline analysis
- Shareable HTML roofline
- Flow graph analysis

Benchmark: Binomial Options Pricing Model https://software.intel.com/en-us/articles/binomial-options-pricing-model-code-for-intel-xeon-phi-coprocessor

Performance results are based on testing as of August 2017 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. See Vectorize & Thread or Performance Dies Configurations for 2010-2017 Benchmarks in Backup. Testing by Intel as of August 2017.

Learn More: http: intel.ly/advisor

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, & SSE3 instruction sets & other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

'Automatic' Vectorization is Often Not Enough

A good compiler can still benefit greatly from vectorization optimization—Intel® Advisor

Compiler will not always vectorize

- With Intel[®] Advisor, check for Loop Carried Dependencies
- All clear? Force vectorization. C++ use: pragma simd, Fortran use: SIMD directive

Not all vectorization is efficient vectorization

- Stride of 1 is more cache efficient than stride of 2 & greater use Advisor to Analyze
- Consider data layout changes
 <u>Intel[®] SIMD Data Layout Templates</u> can help

Benchmarks (prior slide) did not all 'auto vectorize.' Compiler directives were used to force vectorization & get more performance.

Arrays of structures are great for intuitively organizing data, but less efficient than structures of arrays. Use <u>SIMD Data Layout</u> <u>Templates</u> to map data into a more efficient layout for vectorization.

Optimization Notice

Get Breakthrough Vectorization Performance

Intel[®] Advisor—Vectorization Advisor

Faster Vectorization Optimization

- Vectorize where it will pay off most
- Quickly ID what is blocking vectorization
- Tips for effective vectorization
- Safely force compiler vectorization
- Optimize memory stride

Data & Guidance You Need

- Compiler diagnostics + Performance Data + SIMD efficiency
- Detect problems & recommend fixes
- Loop-Carried Dependency Analysis
- Memory Access Patterns Analysis

FILTE		Loo	ps And Functio						٥	FF	Sma	int Mode INTE	° ELAC	VISOR 20	م 019
ROOF	+ - Function Call Sites and Loops	۵	Vector Issues	Self Time -	Total Time	Туре	FLOPS GFLOPS	AI	Why No Vectorization?		ed Loops Efficiency	Gain	≫ VL	mp	>
LINE	+ ⁽⁵ [loop in S252 at loops90.f:1172]	-	💡 1 Possible	3.129s 7.0%	3.129	Vectorized	0.191	0.115	🖬 1 vectorizat	AVX2	17%	1.36x	4; 8	99; 6; 1; 1	-
	[loop in S2101 at loops90.f:1749]	<	2 Possible	2.765s 6.2%	2.765s	Scalar	0.1421	0.067	vectorizatio					12	
	⊕ [loop in s442_\$omp\$parallel_for		💡 1 Ineffecti	1.492s 3.4%	1.492s	Vectorized+	0.5861	0.165		AVX2	14%	1.09x	8	30; 1; 3	
				1.108s 2.5%	1.108s	Vector Funct	3.9111	0.156		AVX2					
	+ 🖱 [loop in S353 at loops90.f:2381]		9 1 Possible	0.989s 2.2%	0.989s	Vectorized (2.0231	0.134		AVX2	27%	2.16x	8	6; 4; 1	\checkmark
	< >	<												3	>

Optimize for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) with or without access to Intel AVX-512 hardware

Find Effective Optimization Strategies

Intel® Advisor—Cache-aware Roofline Analysis

Roofline Performance Insights

- Highlights poor performing loops
- Shows performance 'headroom' for each loop
 - Which can be improved
 - Which are worth improving
- Shows likely causes of bottlenecks
- Suggests next optimization steps

Nicolas Alferez, Software Architect Onera – The French Aerospace Lab

"I am enthusiastic about the new "integrated roofline" in Intel[®] Advisor. It is now possible to proceed with a step-bystep approach with the difficult question of memory transfers optimization & vectorization which is of major importance."

Optimization Notice

Visualize Parallelism—Interactively Build, Validate & Analyze Algorithms Intel® Advisor—Flow Graph Analyzer (FGA)

- Visually generate code stubs
- Generate parallel C++ programs
- Click & zoom through your algorithm's nodes & edges to understand parallel data & program flow
- Analyze load balancing, concurrency, & other parallel attributes to fine tune your program

Use Threading Building Blocks or OpenMP* 5 (draft) OMPT APIs

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Debug Memory & Threading with Intel[®] Inspector Find & Debug Memory Leaks, Corruption, Data Races, Deadlocks

🗾 Loca	te Deadlocl	ks and Dat	INTEL INSPECTOR 2019				
4 💮 Targe	t 🔥 Analysis 1	Type 🔂 Coll	ection Log	Summary			Þ
Problems							?
ID 🔺 🔍	Type So	ources		Modules		State	
🗄 P1 🛛 🔕	Data race fir	nd_and_fix_thre	eading_errors.c	_fix_threading_errors.exe	R New		
🖽 P 2 🛛 🔕	Data race wi	invideo.h		_fix_threading_errors.exe	P Confirmed	1	
⊲ 1		1	of 10 D All	Code Locat	ions: Data race		Ð
Description	Source	Function	Module	cour Local	Variable	_	
Read	winvideo.h:20	1 loop_once	find_and_fix_	threading_en	ors.exe g_updates		
199 { 200	// screen				<pre>find_and_fix_thre find_and_fix_thre</pre>		
201 202 203	<pre>if(int updates = g_updates) { g_updates = 0; if(g video->updating) { g skips += up</pre>						
Write	winvideo.h:27	0 next_frame	find_and_fix_	threading_er	ors.exe g_updates		
268 { 269	if(!running) return false; find_and_fix_threading_errors. find_and_fix_threading_errors.					s.ex	
270 271 272	<pre>g_updates++; // Fast but inaccurate count if(!threaded) while(loop_once(this)); else if(g handles[1]) {</pre>					s.ex	
414	erse ir(g_	_nanores[1])	1		TING_and_TIX_CHIE	ading_error.	s.ex

Learn More: intel.ly/inspector-xe

Correctness Tools Increase ROI by 12%-21%¹

- Errors found earlier are less expensive to fix
- Races & deadlocks not easily reproduced
- Memory errors are hard to find without a tool

Debugger Integration Speeds Diagnosis

- Breakpoint set just before the problem
- Examine variables and threads with the debugger

What's New in 2019 Release Find Persistent Memory Errors

- Missing / redundant cache flushes
- Missing store fences
- Out-of-order persistent memory stores
- PMDK transaction redo logging errors

¹Cost Factors – Square Project Analysis – CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab NIST: National Institute of Standards & Technology: Square Project Results

Optimization Notice

INTEL® PARALLEL STUDIO XE Component tools

BUILD

Intel® C++ Compiler Intel® Fortran Compiler Intel® Distribution for Python* Intel® Math Kernel Library Intel® Integrated Performance Primitives Intel® Threading Building Blocks Intel® Data Analytics Acceleration Library Included in Composer Edition

ANALYZE

Intel® VTune™ Amplifier Intel® Advisor Intel® Inspector

Part of the Professional Edition

SCALE

Intel® MPI Library Intel® Trace Analyzer & Collector Intel® Cluster Checker

Part of the Cluster Edition

Boost Distributed Application Performance with Intel[®] MPI Library Performance, Scalability & Fabric Flexibility

Standards Based Optimized MPI Library for Distributed Computing

- Built on open source MPICH Implementation
- Tuned for low latency, high bandwidth & scalability
- Multi-fabric support for flexibility in deployment

What's New in 2019 Release

- New MPI code base- MPI-CH4 (on the path to Exascale & beyond)
- Greater scalability & shortened CPU paths
- Superior MPI Multi-threaded performance
- Supports the latest Intel[®] Xeon[®] Scalable processor

Optimization Notice

Intel[®] MPI Library Features

Optimized MPI Application Performance

- Application-specific tuning
- Automatic tuning
- Support for Intel[®] Omni-Path Architecture Fabric

Multi-vendor Interoperability & Lower Latency

- Industry leading latency
- Performance optimized support for the fabric capabilities through OpenFabrics* (OFI)

Faster MPI Communication

Optimized collectives

Sustainable Scalability

 Native InfiniBand* interface support allows for lower latencies, higher bandwidth, and reduced memory requirements

More Robust MPI Applications

Seamless interoperability with Intel® Trace Analyzer & Collector

Intel[®] MPI Library = 1 library to develop, maintain & test for multiple fabrics

Profile & Analyze High Performance MPI Applications Intel® Trace Analyzer & Collector

Powerful Profiler, Analysis & Visualization Tool for MPI Applications

- Low overhead for accurate profiling, analysis & correctness checking
- Easily visualize process interactions, hotspots & load balancing for tuning & optimization
- Workflow flexibility: Compile, Link or Run

What's New in 2019 Release

- Minor updates & enhancements
- Supports the latest Intel[®] Xeon[®] Scalable processors

Learn More: software.intel.com/intel-trace-analyzer

Efficiently Profile MPI Applications Intel® Trace Analyzer & Collector

Helps Developers

- Visualize & understand parallel application behavior
- Evaluate profiling statistics & load balancing
- Identify communication hotspots

Features

- Event-based approach
- Low overhead
- Excellent scalability
- Powerful aggregation & filtering functions
- Idealizer
- Scalable

Optimization Notice

i 🔟 📩 69.17	3 734 - 69.372 292 : 0.198	558 Seconds 💌	🛃 Al_Nodes 🛛 💋	Major Function	Groups 👌 🍸 🔆	: 🌗 🀴	<u> </u>
69.18 .	69.22 69.20 s	° 69.24 s	69.26 #	69.28 .	69.30 s 69.32 s	69.34 s	69.36 .
ode1 Application	ApplicArApplication		MpplidApApplication		ApplidArApplication		ApplidA;Application
node 1-mic0	AMPI Application	MPI	A//PI/Application	MPI	AMPI (Application	MPI	
	and a supplication	100	Application	1997		1974	
node1-mic1/MPI	A MPI Application	MPI	AMPI Application	MPI	AMPI Application	MPI	AMPI Application
				\sim			
node2 Application	Appli: Application		ApplicAcApplication		ApplidArApplication		ApplidArApplication
node2-mic0wMP1	AMPI Application	MPI	AMPI Application	MPI	AMPI Application	MPI	An PlApplication
node2-mic1/MPI	ArMPI Application	MPI	AMPI (Application	4MPI	AVMPI (Application	MPI	AMPI Application
node3 Application	ApplidAcApplication		Appli:AcApplication		Appli:ArApplication		ApplidAjApplication
node3-mic0	AMPI Application	MPI	AMPI Application	MPI	AMPI (Application	IMPI	AMPI (Application
nodes-micu wer	Application	MP1	AMP1 Application	And P.4	aying appication	199-1	APIPT Application
node3-mic1	AMPL Application	MPI	AMPI (Application	MPI	AVIPE (Application	MPI	AMPI (Application
_							
node4 Application	ApplicAcApplication		ApplicAcApplication		ApplidArApplication		ApplidArApplication
		/				/	
node4-mic0	AMPI Application	MPI	Aphene Application	MPI	AMPI Application	MPI	AMPI Application
1							
node4-mic1 <mark>44MPI</mark>	ArMPI Application	MPI	4 MPI Application	MPI	AMPI Application	4MPI	AMPI Application

Use an Extensive Diagnostic Toolset for High Performance Compute Clusters—Intel[®] Cluster Checker (for Linux*)

Ensure Cluster Systems Health

- Expert system approach providing cluster systems expertise verifies system health: find issues, offers suggested actions
- Provides extensible framework, API for integrated support
- Check 100+ characteristics that may affect operation & performance improve uptime & productivity

New in 2019 Release: Output & Features Improve Usability & Capabilities

- Simplified execution with a single command
- New output format with overall summary
 - Simplified issue assessment for 'CRITICAL', 'WARNING', or 'INFORMATION'
 - Extended output to logfile with details on issue, diagnoses, observations
- Added auto-node discovery when using Slurm*
- Cluster State 2 snapshot comparison identifies changes
- And more...

For application developers, cluster architects & users, & system administrators

Optimization Notice

Functionality, Uniformity, & Performance Tests

Intel[®] Cluster Checker

Comprehensive pre-packed cluster systems expertise out-of-the-box

✓ Suitable for HPC experts & those new to HPC

Tests can be executed in selected groups on any subset of nodes

Optimization Notice

Speaker – the speaker notes are important for this presentation. Be sure to read them.

WHICH TOOL SHOULD I USE?

Optimizing Performance on Parallel Hardware

Intel[®] Parallel Studio XE—It's an iterative process...

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 47

Performance Analysis Tools for Diagnosis

Intel[®] Parallel Studio

Optimization Notice

Tools for High Performance Implementation Intel® Parallel Studio XE

Optimization Notice

INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING

ARTIFICIAL Intelligence

is the ability of machines to learn from experience, without explicit programming, in order to perform cognitive functions associated with the human mind

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multi-layered neural networks learn from vast amounts of data

Optimization Notice

MACHINE VS. DEEP LEARNING

Optimization Notice

DEEP LEARNING BREAKTHROUGHS

Machines able to meet or exceed human image & speech recognition

Source: ILSVRC ImageNet winning entry classification error rate each year 2010-2016 (Left), https://www.microsoft.com/en-us/research/blog/microsoft-researchers-achieve-new-conversational-speech-recognition-milestone/ (Right)

Optimization Notice

DEEP LEARNING BASICS

Training with a large data set AND deep (many layered) neural network often leads to the highest accuracy inference

Optimization Notice

		ARTIFICIAL INTELLIGENCE							
	Solution Architects	Al Solutions Catalog (Public & Internal) Platforms Platforms Pla							
	TOOLKITS	DEEP LEARNING DEPLOYMENT DEEP LEARNING							
KN	IUULNI J	OpenVINO™ † Intel® Movidius™ SDK Intel® Deep Open Visual Inference & Neural Network Optimization Optimized inference deployment Learning Studio [‡]							
I	App 👌 Developers 🍑	Open <u>V</u> isual <u>I</u> nference & <u>N</u> eural Network <u>O</u> ptimization toolkit for inference deployment on CPU, processor graphics, FPGA & VPU using TF, Caffe* & MXNet* Optimized inference deployment for all Intel® Movidius™ VPUs using TensorFlow* & Caffe*							
FL	LIBRARIES	MACHINE LEARNING LIBRARIESDEEP LEARNING FRAMEWORKSPythonRDistributedNow optimized for CPUOptimizations in progress							
ÌĒ	Data Scientists	 Scikit-learn Pandas NumPy NumPy Cart Mahout Caffe BigDL/Spark* Caffe2 PyTörch PyTörch PaddlePaddle* 							
U I		ANALYTICS, MACHINE & DEEP LEARNING PRIMITIVES DEEP LEARNING GRAPH COMPILER							
IG	FUUNDATION	<u>Python</u> <u>DAAL</u> <u>MKL-DNN</u> <u>clDNN</u> <u>Intel® nGraph™ Compiler</u> (Alpha)							
AE	Library 😥 Developers	Intel distributionIntel® Data AnalyticsOpen-source deep neural network functions forOpen-sourced compiler for deep learning modeloptimized forAcceleration Librarynetwork functions for CPU, processor graphicsComputations optimized for multiple devices (CPU, GPU, NNP) using multiple frameworks (TF, MXNet, ONNX)							
LN		AI FOUNDATION DEEP LEARNING ACCELERATORS							
Ľ	HAKUWAKE								
E	IT System	ATOM CORE of the formation of the format							
[†] Formerly the Intel® Computer *Other names and brands may All products, computer system:	Vision SDK be claimed as the property of others.	sed on current expectations, and are subject to change without notice.							
Optimization	Notice								

INTEL[®] XEON[®] PROCESSORS

Now Optimized For Deep Learning

INFERENCE THROUGHPUT

Up to

Intel® Xeon® Platinum 8180 Processor higher Intel Optimized Caffe AlexNet with Intel® MKL training throughput compared to Intel® Xeon® Processor E5-2699 v3 with BVLC-Caffe Optimized Frameworks Optimized Intel®

MKL Libraries

nte

PLATINUM inside"

Intel® Xeon® Platinum 8180 Processor higher Intel optimized Caffe GoogleNet v1 with Intel® MKL inference throughput compared to Intel® Xeon® Processor E5-2699 v3 with BVLC-Caffe

Inference and training throughput uses FP32 instructions

Deliver significant AI performance with hardware and software optimizations on Intel® Xeon® Scalable Family

¹ The benchmark results may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular user's components, computer system or workloads. The results are not necessarily representative of other benchmark results may show greater or lesser impact from mitigations. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and functions. Any change to any of those factors may cause the results to vary. You should consult oftweir information and performance tests to assist you in fully evaluating you croatemplated purchases, including the performance. Software and workloads used in performance tests may have been optimized for performance tests to assist you in fully evaluating your contemplated purchases. Note that product when combined with other products. For more complete information visit. <u>http://www.intel.com/performance.</u>Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and unctions. Any change to any of those factors may cause the results to vary. You should consult ofter information and performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult ofter information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information sist in the secure da of June 2018. Configurations: See silde 4.

Optimization Notice

MACHINE LEARNING

WHAT IS MACHINE LEARNING?

Applying Algorithms to observed data and make predictions based on data.

Supervised Learning

We train the model. We feed the model with correct answers. Model Learns and finally predicts.

We feed the model with "ground truth".

Unsupervised Learning

Data is given to the model. Right answers are not provided to the model. The model makes sense of the data given to it.

Can teach you something you were probably not aware of in the given dataset.

Types of Supervised and Unsupervised learning

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

62

Regression

Predict a real numeric value for an entity with a given set of features.

Property Attributes

Linear Regression Model

Total sqft Lot Size Bathrooms Bedrooms Yard Pool Fireplace

Optimization Notice

CLUSTERING Group entities with similar features

MARKET SEGMENTATION

Optimization Notice

DEEP LEARNING

What is the Issue with Linear Classifiers We Have Learnt So Far?

Linear functions can solve the AND problem.

Optimization Notice

What is the Issue with Linear Classifiers We Have Learnt So Far?

Linear functions can solve the OR problem.

Optimization Notice

Why Deep Learning – What is wrong with Linear Classifiers?

Optimization Notice

Courtent & Voris/InterCourtes chara-science/introducing-deep-learning-and-neural-networks-deep-learning-for-rookies-1-bd68f9cf5883
*Other names and brands may be claimed as the property of others.

We Need Layers Usually Lots with Non-linear Transformations

Optimization Notice

We Need Layers Usually Lots with Non-linear Transformations

Optimization Notice

This is a brewing domain called Deep Learning

In the machine learning world, we use neural networks. The idea comes from biology. Each layer learns something.

"Deep learning is a set of algorithms in machine learning that attempt to model high-level abstractions in data by using architectures composed of multiple non-linear transformations."

- Wikipedia*

Motivation for Neural Nets

- Use biology as inspiration for mathematical model
- Get signals from previous neurons
- Generate signals (or not) according to inputs
- Pass signals on to next neurons≈
- By layering many neurons, can create complex model

Optimization Notice

Each Layer Learns Something

Optimization Notice

THE BASICS OF BUILDING A NEURAL NETWORK

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

74

Basic Neuron Visualization

Optimization Notice

Types of Activation Functions

- Sigmoid function
 - Smooth transition in output between (0,1)
- Tanh function
 - Smooth transition in output between (-1,1)
- ReLU function
 - f(x) = max(x,0)
- Step function
 - f(x) = (0,1)

Optimization Notice

Why Neural Nets?

- Why not just use a single neuron? Why do we need a larger network?
- A single neuron (like logistic regression) only permits a linear decision boundary.
- Most real-world problems are considerably more complicated!

Optimization Notice

Feedforward Neural Network

Optimization Notice

Weights

Optimization Notice

Weights (Represented by Matrices)

Optimization Notice

Input Layer

Optimization Notice

Hidden Layers

Optimization Notice

Net Input (Sum of Weighted Inputs, Before Activation Function)

Optimization Notice

Activations (Output of Neurons to Next Layer)

Optimization Notice

Output Layer

Optimization Notice

How to Train a Neural Net?

Input (Feature Vector)

- Put in Training inputs, get the output
- Compare output to correct answers: Look at loss function J
- Adjust and repeat!
- Backpropagation tells us how to make a single adjustment using calculus.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Output

(Label)

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

- Let the Neural Network learn which kernels are most useful
- Use same set of kernels across entire image (translation invariance)
- Reduces number of parameters and "variance" (from bias-variance point of view)
- Can Think of Kernels as "Local Feature Detectors"

Horizontal Line Detector

Corner Detector

Optimization Notice

CNN for Digit Recognition

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

 $\overline{7}$

Convolutional Neural Networks (CNN) for Image Recognition

Convolution

 Each element in the output is the result of a dot product between two vectors

Detected the pattern!

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Source: http://cs231n.github.io/

Pooling: Max-pool

- For each distinct patch, represent it by the maximum
- 2x2 Max-Pool shown below

Optimization Notice

Differences Between CNN and Fully Connected Networks

Convolutional Neural Network

- Each neuron connected to a small set of nearby neurons in the previous layer
- Uses same set of weights for each neuron
- Ideal for spatial feature recognition, Ex: Image recognition
- Cheaper on resources due to fewer connections

Fully Connected Neural Networks

- Each neuron is connected to every neuron in the previous layer
- Every connection has a separate weight
- Not optimal for detecting features
- Computationally intensive heavy memory usage

Optimization Notice

CLASSIC ML TOOLS

INTEL® MATH KERNEL LIBRARY (MKL)

INTEL® DATA ANALYTICS ACCELERATION LIBRARY (DAAL)

INTEL[®] MATH KERNEL LIBRARY

INTEL[®] MKL

Faster, Scalable Code with Intel® Math Kernel Library

- Speeds computations for scientific, engineering, financial and machine learning applications by providing highly optimized, threaded, and vectorized math functions
- Provides key functionality for dense and sparse linear algebra (BLAS, LAPACK, PARDISO), FFTs, vector math, summary statistics, deep learning, splines and more
- Dispatches optimized code for each processor automatically without the need to branch code
- Optimized for single core vectorization and cache utilization
- Automatic parallelism for multi-core and many-core
- Scales from core to clusters
- Available at no cost and royalty free
- Great performance with minimal effort!

Available as standalone or as a part of Intel® Parallel Studio XE and Intel® System Studio

Intel[®] Architecture Platforms

Operating System: Windows*, Linux*, MacOS1*

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the pr<u>operty of others.</u> INTEL[®] MKL OFFERS... Dense and sparse linear algebra

96

Automatic Dispatching to Tuned ISA-specific Code Paths

More cores \rightarrow More Threads \rightarrow Wider vectors

1. Product specification for launched and shipped products available on ark.intel.com.

Optimization Notice

What's New for Intel[®] MKL 2019?

Just-In-Time Fast Small Matrix Multiplication

• Improved speed of S/DGEMM for Intel[®] AVX2 and Intel[®] AVX-512 with JIT capabilities

Sparse QR Solvers

- Solve sparse linear systems, sparse linear least squares problems, eigenvalue problems, rank and null-space determination, and others
- **Generate Random Numbers for Multinomial Experiments**
- Highly optimized multinomial random number generator for finance, geological and biological applications

Performance Benefits for the latest Intel Architectures

DGEMM, SGEMM Optimized by Intel[®] Math Kernel Library 2019 Gold for Intel[®] Xeon[®] Platinum Processor

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular user's components, computer system or workloads. The results are not necessarily representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configuration: Intel® Xeon® Platinum 8180 H0 205W 2x28@2.5GHz 192GB DDR4-2666

Benchmark Source: Intel® Corporation.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Optimization Notice

Intel[®] MKL 11.0 - 2018 Noteworthy Enhancements

Conditional Numerical Reproducibility (CNR)

Intel[®] Threading Building Blocks (TBB) Composability

Intel® Optimized High Performance Conjugate Gradient (HPCD) Benchmark

Small GEMM Enhancements (Direct Call) and Batch

Compact GEMM and LAPACK Support

Sparse BLAS Inspector-Executor API

Extended Cluster Support (MPI wrappers and macOS*)

Parallel Direct Sparse Solver for Clusters

Extended Eigensolvers

What's Inside Intel[®] MKL

Optimization Notice

Intel[®] MKL BLAS (Basic Linear Algebra Subprograms)

De-facto Standard APIs since the 1980s	
100s of Basic Linear Algebra Functions	Level 1 – vector vector operations, O(N) Level 2 – matrix vector operations, O(N ²) Level 3 – matrix matrix operations, O(N ³)
Precisions Available	Real – Single and Double Complex - Single and Double
BLAS-like Extensions	Direct Call, Batched, Packed and Compact
Reference Implementation	http://netlib.org/blas/

Copyright @ 2019 Intel Corporation All

Intel® MKL LAPACK (Linear Algebra PACKage)

De-facto Standard APIs since the 1990s

1000s of Linear Algebra Functions	Matrix factorizations - LU, Cholesky, QR Solving systems of linear equations Condition number estimates Symmetric and non-symmetric eigenvalue problems Singular value decomposition and many more
Precisions Available	Real – Single and Double,
	Complex – Single and Double
Reference Implementation	http://netlib.org/lapack/

Intel[®] MKL Fast Fourier Transforms (FFTs)

FFTW Interfaces support	C, C++ and FORTRAN source code wrappers provided for FFTW2 and FFTW3. FFTW3 wrappers are already built into the library
Cluster FFT	Perform Fast Fourier Transforms on a cluster Interface similar to DFTI Multiple MPIs supported
Parallelization	Thread safe with automatic thread selection
Storage Formats	Multiple storage formats such as CCS, PACK and Perm
Batch support	Perform multiple transforms in a single call
Additional Features	Perform FFTs on partial images Padding added for better performance Transform combined with transposition Mixed-language usage supported

Optimization Notice

Intel[®] MKL Vector Math

Example:	$y(i) = e^{x(i)} \text{ for } i = 1 \text{ to } n$
Broad Function Support	Basic Operations – add, sub, mult, div, sqrt Trigonometric– sin, cos, tan, asin, acos, atan Exponential – exp,, pow, log, log10, log2, Hyperbolic – sinh, cosh, tanh Rounding – ceil, floor, round And many more
Precisions Available	Real – Single and Double Complex - Single and Double
Accuracy Modes	High - almost correctly rounded Low - last 2 bits in error Enhanced Performance - 1/2 the bits correct

Optimization Notice

Intel[®] MKL Vector Statistics

Random Number Generators (RNGs)	Pseudorandom, quasi-random and non-deterministic random number generators with continuous and discrete distribution
Summary Statistics	Parallelized algorithms to compute basic statistical estimates for single and double precision multi- dimensional datasets
Convolution and Correlation	Linear convolution and correlation transforms for single and double precision real and complex data

Intel[®] MKL Sparse Solvers

PARDISO - Parallel	Factor and solve Ax = b using a parallel shared memory LU, LDL, or LL^{T} factorization
Direct Sparse	Supports a wide variety of matrix types including real, complex, symmetric, indefinite,
Solver	Includes out-of-core support for very large matrix sizes
Parallel Direct Sparse Solver for Clusters	Factor and solve Ax = b using a parallel distributed memory <i>LU</i> , <i>LDL</i> , or <i>LL^T</i> factorization Supports a wide variety of matrix types (real, complex, symmetric, indefinite,) Supports A stored in 3-array CSR3 or BCSR3 formats
DSS – Simplified PARDISO Interface	An alternative, simplified interface to PARDISO
ISS – Iterative Sparse Solvers	Conjugate Gradient (CG) solver for symmetric positive definite systems Generalized Minimal Residual (GMRes) for non-symmetric indefinite systems Rely on Reverse Communication Interface (RCI) for matrix vector multiply

Intel[®] MKL General Components

Sparse BLAS	NIST-like and inspector execute interfaces
Data Fitting	1D linear, quadratic, cubic, step-wise and user-defined splines, spline-based interpolation and extrapolation
Partial Differential Equations	Helmhotz, Poisson, and Laplace equations
Optimization	Trust-region solvers for nonlinear least square problems with and without constraints
Service Functions	Threading controls Memory management Numerical reproducibility
Optimization Notice	

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

intel

Intel[®] MKL Summary

Boosts application performance with minimal effort	 feature set is robust and growing provides scaling from the core, to multicore, to manycore, and to clusters automatic dispatching matches the executed code to the underlying processor future processor optimizations included well before processors ship
Showcases the	Intel® Distribution for LINPACK* Benchmark
world's fastest	Intel® Optimized High Performance Conjugate Gradient
supercomputers ¹	Benchmark

¹http://www.top500.org

Optimization Notice

Intel[®] MKL Resources

Intel[®] MKL Website <u>https://software.intel.com/en-us/intel-mkl</u>

Intel[®] MKL Forum <u>https://software.intel.com/en-us/forums/intel-math-kernel-library</u>

Intel® MKL Benchmarks	https://software.intel.com/en-us/intel-mkl/benchmarks#
Intel®MKL Link Line Advisor	http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

INTEL® DATA ANALYTICS ACCELERATION LIBRARY INTEL® DAAL

Speed-up Machine Learning and Analytics with Intel[®] Data Analytics Acceleration Library (Intel[®] DAAL)

Boost Machine Learning & Data Analytics Performance

- Helps applications deliver better predictions faster
- Optimizes data ingestion & algorithmic compute together for highest performance
- Supports offline, streaming & distributed usage models to meet a range of application needs
- Split analytics workloads between edge devices and cloud to optimize overall application throughput

Learn More: software.intel.com/daal

What's New in the 2019 Release

New Algorithms

- High performance Logistic Regression, most widely-used classification algorithm
- Extended Gradient Boosting Functionality provides inexact split calculations & algorithm-level computation canceling by user-defined callback for greater flexibility
- User-defined Data Modification Procedure in CSV & IDBC data sources to implement a wide range of feature extraction & transformation techniques

Optimization Notice

Regression

Problems

- A company wants to define the impact of the pricing changes on the number of product sales
- A biologist wants to define the relationships between body size, shape, anatomy and behavior of the organism

Solution: Linear Regression

 A linear model for relationship between features and the response

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \ldots + \hat{\beta}_N x_N$$

Source: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. (2014). An Introduction to Statistical Learning. Springer

Classification

Problems

- An emailing service provider wants to build a spam filter for the customers
- A postal service wants to implement handwritten address interpretation

Solution: Support Vector Machine (SVM)

- Works well for non-linear decision boundary
- Two kernel functions are provided:
 - Linear kernel
 - Gaussian kernel (RBF)
- Multi-class classifier
 - One-vs-One

Source: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. (2014). An Introduction to Statistical Learning. Springer

Cluster Analysis

Problems

- A news provider wants to group the news with similar headlines in the same section
- Humans with similar genetic pattern are grouped together to identify correlation with a specific disease

Solution: K-Means

- Pick k centroids
- Repeat until converge:
 - Assign data points to the closest centroid
 - Re-calculate centroids as the mean of all points in the current cluster
 - Re-assign data points to the closest centroid

Source: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. (2014). An Introduction to Statistical Learning. Springer

Optimization Notice

Dimensionality Reduction

Problems

- Data scientist wants to visualize a multidimensional data set
- A classifier built on the whole data set tends to overfit

Solution: Principal Component Analysis

- Compute eigen decomposition on the correlation matrix
- Apply the largest eigenvectors to compute the largest principal components that can explain most of variance in original data

Source: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. (2014). An Introduction to Statistical Learning. Springer

Performance Scaling with Intel® Data Analytics Acceleration Library (Intel® DAAL)

Within a CPU Core

- SIMD vectorization: optimized for the latest instruction sets, Intel[®] AVX2, AVX512...
- Internally relies on sequential Math Kernel Library

Scale to Multicores or Many Cores

Threading Building Blocks threading

Scale to Cluster

- Distributed processing done by user application (MPI, MapReduce, etc.)
- Intel[®] DAAL provides
 - Data structures for partial and intermediate results
 - Functions to combine partial or intermediate results into global result

Processing Modes

Batch Processing

 $R = F(D_1, \dots, D_k)$

Online

Processing

 $S_{i+1} = T(S_i, D_i)$ $R_{i+1} = F(S_{i+1})$ Distributed Processing

Data Transformation & Analysis Algorithms

Intel[®] Data Analytics Acceleration Library

Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Machine Learning Algorithms

Intel® Data Analytics Acceleration Library

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Classification

Problems

An email service provider wants to build a spam filter for the customers

A postal service wants to implement handwritten address interpretation

Solution: Support Vector Machine (SVM)

Works well for non-linear decision boundary

Two kernel functions are provided:

- Linear kernel
- Gaussian kernel (RBF)

Multi-class classifier

One-vs-One

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Source: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. (2014). *An Introduction to Statistical Learning.* Springer

Performance Example : Read And Compute SVM Classification with RBE kernel

Training dataset: CSV file (PCA-preprocessed MNIST, 40 principal components) n=42000, p=40

Testing dataset: CSV file (PCA-preprocessed MNIST. 40 principal components) n=28000, p=40

Projection Methods for Outlier Detection

Principal Component Analysis (PCA)

 Computes principal components: the directions of the largest variance, the directions where the data is mostly spread out

PCA for outlier detection

- Project new observation on the space of the first k principal components
- Calculate score distance for the projection using first k singular values
- Compare the distance against threshold

http://i.stack.imgur.com/uYaTv.png

More Resources

Intel® Data Analytics Acceleration Library (Intel® DAAL)

Download Now

- Free version with Intel[®] Performance Libraries
- Bundled in <u>Intel[®] Parallel Studio XE or Intel[®] System Studio</u>, includes Intel Priority Support

Product Information

software.intel.com/intel-daal

Getting Started Guides

- software.intel.com/intel-daal-support/training
- Webinars, how-to videos & articles on Intel[®] Tech.Decoded

<u>View Video:</u> Speed up your machine learning application code,turn data into insight and actionable results with Intel[®] DAAL and Intel[®] Distribution for Python*

Optimization Notice

INTEL® DISTRIBUTION FOR PYTHON 2019

The most popular languages for Data Science

"Python wins the heart of developers across all ages, according to our Love-Hate index. Python is also the most popular language that **developers want to learn** overall, and a **significant share already knows it**"

2018 Developer Skills Report

H

HackerRank

- <u>Python</u>, Java, R are top 3 languages in job postings for data science and machine learning jobs
 - <u>https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html</u>

The most popular ML packages for Python

Optimization Notice

The most popular ML package for Python

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest, ...

- Examples

Regression

...

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

Examples

Clustering

Automatic grouping of similar objects into sets.

 Applications: Customer segmentation,

 Grouping experiment outcomes

 Algorithms: k-Means, spectral clustering,

 mean-shift, ...

 — Examples

Optimization Notice

Normation of the second second

M<

Chapter 19: Performance Optimization of **Black—Scholes** Pricing

$$\begin{split} & V_{\text{all}} = S_0 \cdot \text{CDF}\left(d_1\right) - e^{-rT} \cdot X \cdot \text{CDF}\left(d_2\right) \\ & V_{\text{put}} = e^{-rT} \cdot X \cdot \text{CDF}\left(-d_2\right) - S_0 \cdot \text{CDF}\left(-d_1\right) \end{split}$$

Performance gap between C and Python

Performance gap between C and Python

Hardware and software efficiency crucial in production (Perf/Watt, etc.)

Efficiency = Parallelism

- Instruction Level Parallelism with effective memory access patterns
- SIMD
- Multi-threading

* Roofline Performance Model https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Optimization Notice

Performance matters at every stage

Optimization Notice

What's Inside Intel® Distribution for Python

High Performance Python* for Scientific Computing, Data Analytics, Machine Learning

FASTER PERFORMANCE	GREATER PRODUCTIVITY	ECOSYSTEM COMPATIBILITY		
Performance Libraries, Parallelism, Multithreading, Language Extensions	Prebuilt & Accelerated Packages	Supports Python 2.7 & 3.x, conda, pip		
Accelerated NumPy/SciPy/scikit-learn with Intel [®] MKL ¹ & Intel [®] DAAL ²	Prebuilt & optimized packages for numerical computing, machine/deep	Compatible & powered by Anaconda*, supports conda & pip		
Data analytics, machine learning & deep learning with scikit-learn, pyDAAL	learning, HPC, & data analytics Drop in replacement for existing Python -	Distribution & individual optimized packages also available via conda, pip		
Scale with Numba* & Cython*	No code changes required	YUM/APT, Docker image on DockerHub Optimizations upstreamed to main		
Includes optimized mpi4py, works with Dask* & PySpark*	Jupyter* notebooks, Matplotlib included Conda build recipes included in packages	Python trunk		
Optimized for latest Intel® architecture	Free download & free for all uses including commercial deployment	Commercial support through Intel® Parallel Studio XE		

Intel[®] Architecture Platforms

CORE 13 CORE 15 CORE 15 CORE 15 CORE 17 Finisher CORE 15 Finisher CORE 15 Finisher CORE 15 Finisher CORE 15 Finisher Fin

Operating System: Windows*, Linux*, MacOS1*

¹Intel[®] Math Kernel Library ²Intel[®] Data Analytics Acceleration Library

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹ Available only in Intel[®] Parallel Studio Composer Edition.

What's New for 2019? Intel[®] Distribution for Python*

Faster Machine learning with Scikit-learn functions

- Support Vector Machine (SVM) and K-means prediction, accelerated with Intel[®] DAAL
- Built-in access to XGBoost library for Machine Learning
- Access to Distributed Gradient Boosting algorithms
- Ease of access installation
- Now integrated into Intel[®] Parallel Studio XE installer.

Optimizing scikit-learn with Intel® DAAL

scikit-learn

DAAL4Py

Intel[®] DAAL

Optimized kernels from Intel® MKL

- The most popular package for machine learning
- Hundreds of algorithms with different parameters
- Has a very flexible and easy-to-use interface

Intel DAAL own Python API (middleware)

High performance of analytical and machine learning algorithms on Intel architecture

High performance basic mathematical routines (BLAS, vector math, RNG, ...)

Optimization Notice

Installing Intel[®] Distribution for Python* 2018

Optimization Notice

Scikit-learn functions now faster with Intel® DAAL

Intel optimizations improve scikit-learn efficiency closer to native code speeds on Intel® Xeon™ processors

■ Stock Python ■ Intel[®] Distribution for Python* 2019

Performance results are based on testing as of July 9, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, see <u>Performance Benchmark Test Disclosure</u>.

Testing by Intel as of July 9, 2018. Configuration: Stock Python: python 3.6.6 hc3d631.4 o installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip; Intel Python: Intel[®] Distribution for Python* 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl 71.001, mkl random 1.0.1 intel_np114py36_6, numba 0.39.0, intel_np114py36_35, 0S: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores)socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel micropactive are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. <u>Notice revision #20110804</u>. For more complete information about compiler optimizations, see our <u>Optimization Notice</u>.

Optimization Notice

But Wait.....There's More!

Outside of optimized Python*, how efficient is your Python/C/C++ application code?

Are there any non-obvious sources of performance loss?

Performance analysis gives the answer!

Tune Python* + Native Code for Better Performance

Analyze Performance with Intel[®] VTune[™] Amplifier (available in Intel[®] Parallel Studio XE)

Challenge

- Single tool that profiles Python + native mixed code applications
- Detection of inefficient runtime execution

Solution

- Auto-detect mixed Python/C/C++ code & extensions
- Accurately identify performance hotspots at line-level
- Low overhead, attach/detach to running application
- Focus your tuning efforts for most impact on performance

Available in Intel® VTune™ Amplifier & Intel® Parallel Studio XE

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Ecollection Log Analysis Target A Suping: Function / Call Stack	Analysis Type 🛛 Summary 🖓 Bottom-u	o 🖸 🗠 Cal	ler/Ca	llee 🖸 Top-down Tree	CPU Time
	CPU Time*		«		Viewing ↓ 1 of 1 ▷ selected stack(s)
Function / Call Stack	Effective Time by Utilization	Spin Time	Ove. Tim.	Module	100.0% (10.809s of 10.809s) demo.pylprocess_slow - demo.py run.pyl <u>slow_encode</u> +0x11 - run.py.4
process_slow	10.403s	0.406s	0s	demo.py	run.pyl <u><module></module></u> +0x57 - run.py:13 python.exe! <u>tmainCRTStartup</u> +0x119 - c
process_fast	4.097s	0.190s	0s	demo.py	KERNEL32.DLL!BaseThreadInitThunk+ ntdll.dll!Rt!UserThreadStart+0x33 - [unkr
fast_encode	0.031s	Os	0s	run.py	ntali.ali: <u>rtioser meadotali</u> +0x35 - janki
get_data	0.016s	0.010s		<frozen importlibboo<="" td=""><td></td></frozen>	
_tmainCRTStartup	0.016s	Os	0s	python.exe	
<module></module>	0.009s	Os		run.py	
_call_with_frames_removed	0.006s	0s	0s	<frozen importlibboo<="" td=""><td></td></frozen>	
Selected 1 row(s):	10.403	s 0.406s	0s		
Q°Q + Q−Q* wmainCRTStartu	4s 5s 6s 7s 8s	9s 10)s	11s 12s 13s 1	445 155

Auto detection & performance analysis of Python & native functions

Diagnose Problem code quickly & accurately

Optimization Notice

Deeper Analysis with Call stack listing & Time analysis

1	:\Vass\Work\pytrace_tpss\projects	\py_demo_1 -	intel \	/Tune Amplifier	
🕼 🖄 📴 🕨 😰 🕪 😂 🕐 rooohs 🗙					Ξ
Basic Hotspots Hotspots by	CPU Usage viewpoint (chang	<u>e</u>)			INTEL VTUNE AMPLIFIER XE 2017
< 📟 Collection Log \varTheta Analysis Target	🍐 Analysis Type 📓 Summary 🔗 Bo	ttom-up 💊 Ca	ller/Ca	allee 🤹 Top-down Tree	e 🖻 Platform 🖡 demo.py 🕨 🕨
Grouping: Function / Call Stack				- L. Q X	
	CPU Time*		~		Viewing ↓ 1 of 1 ▷ selected stack(s)
Function / Call Stack	Effective Time by Utilization	Spin	Ove.	Module	100.0% (0.857s of 0.857s) demo.py!process_slow - demo.py
	Idle Poor Ok Ideal O	/er Time	Tim.		python34.dll!fast_function+0xd7 - ceval.c
	4.360s	0:	s Os	ntdll.dll	python34.dll! <u>call_function</u> +0x310 - ceval run.py! <u>slow_encode</u> +0x11 - run.py:4
	1.289s	0:	s Os	ntdll.dll	python34.dll! <u>fast_function</u> +0xd7 - ceval.c python34.dll!call_function+0x310 - ceval
⊕process_fast	0.907s	0:	s Os	demo.py	run.py! <u><module></module></u> +0x57 - run.py:13
	0.857s	0:		demo.py	python34.dll! <u>PyEval_EvalCodeEx</u> +0x65b
■PyObject_GenericGetAttrWithDict	0.598s	0:		python34.dll	python34.dll! <u>run_mod</u> +0x52 - pythonrun
Gall_function	0.531s	0:		python34.dll	python34.dll! <u>PyRun_FileExFlags</u> +0xb4 python34.dll!PyRun_SimpleFileExFlags
≅func@0x18002f110	0.518s	0:	s Os	ntdll.dll	python34.dll!PyRun_AnyFileExFlags+0x
Selected 1 row(0.857s 0	s Ôs	*	python34.dll! <u>run_file</u> +0xb9 - main.c:319 python34.dll! <u>Py_Main</u> +0x86d - main.c:7
		:			vthon.exel_tmainCRTStartup+0x119
ୁଙ୍ପ+ୁ-ୁଙ୍କ ୀs 2s wmainCRTStartu ୁାନ୍ ାନ୍ମାମ୍ମ ମା	3s 4s 5s 6s 6.667s	3 <mark>s 9</mark> s 1	0s	11s 12s 13s	14s 15s ♥ Thread ♥ ■ Running ♥ ₩₩ CPU Time
Detailed		tartup (TID: 2304)			v iiiii CPO hine v iiiiii Spin and □ ▼ CPU Sample
A Time	CPU Time 100.0%				CPU Usage
Analysis	Spin and Ov	erhead Time			☑ ﷺ CPU Time ☑ ﷺ Spin and
CPU Usage					• »
FILTER 🍞 100.0% 🏹 Any Process	Thread Any Thread Any Module	✓ Any Utiliz	zatic 👻	User/system function -	Show inline funct Functions only

Call Stack Listing for Python* & Native Code

Optimization Notice

A 2-prong approach for Faster Python* Performance

High Performance Python Distribution + Performance Profiling

Step 1: Use Intel[®] Distribution for Python

- Leverage optimized native libraries for performance
- Drop-in replacement for your current Python no code changes required
- Optimized for multi-core and latest Intel processors

Step 2: Use Intel[®] VTune[™] Amplifier for profiling

- Get detailed summary of entire application execution profile
- Auto-detects & profiles Python/C/C++ mixed code & extensions with low overhead
- Accurately detect hotspots line level analysis helps you make smart optimization decisions fast!
- Available in Intel[®] Parallel Studio XE Professional & Cluster Edition

Optimization Notice

HANDS-ON PREPARATION

Hands-On Sessions are for You!

Take your time to understand the Python code samples – don't just execute Jupyter cells 1by1

Also... there are solution files available, while it is in your own interest trying to find a solution yourself ...

Prerequisites for the hands-on part

- 1) Internet connection
- 2) SSH client (e.g. Putty)
- 3) Browser (Jupyter, NoVNC)

Who want's to join the hands-on?

START INSTANCES

C5.xlarge

Optimization Notice

Audience Community Effort

- 1) We have N attendees of the workshop
- 2) While Shailen is preparing N nodes ...
- 3) Audience task
 - a) Collectively solve the following problem
 - b) Each workshop participant gets a unique index 0 < I <= N
- 4) Write down the IP address related to your index from Michael's sheet

Login Credentials

Username: workshop

Password: Intel!1234

VNC Password: Intel!1234

We need two different SSH tunnels:

- 12345:localhost:12345
- 12346:localhost:12346

Putty Setup

🕵 PuTTY Configurati	on		?	×
Category:				
Category: 	^	Basic options for your PuTTY ses Specify the destination you want to connect Host Name (or IP address) workshop@IP Connection type: O Raw O Telnet O Rlogin O SSH Load, save or delete a stored session Saved Sessions AWS Default Settings AWS	t to <u>P</u> ort 22	
··· Teinet ··· Riogin ⊡· SSH ··· Kex ··· Cipher ··· Auth ··· TTY	↓ <u>H</u> elp	Close window on exit: Always Never Only on cle	<u>D</u> elete ean exit <u>C</u> ance	

Optimization Notice

 $ssh -L 12345: localhost: 12345 -L 12346: localhost: 12346 \ workshop@${IP}$

Workshop Setup

\$ cd labs/

\$ 11

total O

drwx-----. 4 workshop workshop 147 Nov 14 13:43 idp_ml
drwxrwxr-x. 4 workshop workshop 127 Nov 15 12:35 tf_basics
drwxrwxr-x. 2 workshop workshop 6 Nov 15 10:20 tf_distributed

IDP HANDS-ON CLASSIC ML

Workshop Setup

\$ cd ~/labs/idp_ml/

\$ 11

total 16

-rwx-----. 1 workshop workshop 230 Nov 14 13:32 01_start_vnc_server.sh

-rw-----. 1 workshop workshop 136 Nov 14 13:42 02_source_environments.sh

-rwx-----. 1 workshop workshop 74 Nov 14 13:43 03_start_notebook.sh

-rwx-----. 1 workshop workshop 48 Nov 14 13:28 04_kill_vnc.sh

drwx-----. 4 workshop workshop 122 Nov 14 16:34 numpy

drwx-----. 3 workshop workshop 124 Nov 14 16:35 sklearn

Start VNC Server and Jupyter Notebook

\$./01_start_vnc_server.sh

New 'ip-172-31-38-147.eu-central-1.compute.internal:1 (workshop)' desktop is ip-172-31-38-147.eu-central-1.compute.internal:1

Starting applications specified in /home/workshop/.vnc/xstartup
Log file is /home/workshop/.vnc/ip-172-31-38-147.eu-central-1.compute.internal:1.log

Now open in your local browser: http://localhost:12345/vnc.html?host=localhost&port=12345

\$ source ./02_source_environments.sh Copyright (C) 2009-2018 Intel Corporation. All rights reserved. Intel(R) VTune(TM) Amplifier 2018 (build 574913)

\$./03_start_notebook.sh

[I 13:46:33.447 NotebookApp] Writing notebook server cookie secret to /run/user/1001/jupyter/notebook_cookie_secret [I 13:46:33.936 NotebookApp] Serving notebooks from local directory: /home/workshop/labs/idp_ml

[I 13:46:33.936 NotebookApp] 0 active kernels

[I 13:46:33.936 NotebookApp] The Jupyter Notebook is running at:

[I 13:46:33.936 NotebookApp] http://127.0.0.1:12346/?token=646642d51856d5385aa7cbe38228717da201c166003e4fbf

[I 13:46:33.936 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

[C 13:46:33.936 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,

to login with a token:

http://127.0.0.1:12346/?token=646642d51856d5385aa7cbe38228717da201c166003e4fbf

Optimization Notice

Open VNC Session

Optimization Notice

Open Jupyter Notebook

vec ip-172-31-38-147.eu-central-1.co × C Home	× + - • ×
← → C ① 127.0.0.1:12346/tree	☆ 🌧
💭 Jupyter	Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New - 2
0 -	Name 🕹 Last Modified
numpy	21 hours ago
🔲 🗅 sklearn	21 hours ago
01_start_vnc_server.sh	a day ago
02_source_environments.sh	a day ago
03_start_notebook.sh	a day ago
04_kil_vnc.sh	a day ago

Optimization Notice

numpy/numpy_demo.ipynb – 15 Minutes

- 1) Why is the performance using the NumPy functions is lower as expected?
- 2) Implement the black_scholes function in a NumPy like fashion
- 3) Measure the speedup and explain where exactly it is coming from
- 4) Do benchmarking with Vtune
 - a) Result will open in VNC session
 - b) Proof your arguments from 3) using the VTune result
 - c) Look at the call-stack in order to see native vs managed code

NumPy Demo Summary

- Use NumPy for compute intensive operations (MKL enabled)
- Make sure to apply operations to as many elements as possible at a time
- Check with VTune if there are performance hotspots outside of optimized code
- Speedup = #Cores * Vector Width * Other optimizations (e.g. cache blocking)

k Pros b D Ob a≇ (?) Weizene				current of	niecto - Inte	el VTune Amp	offer				
	hs5205 X				.,						
Deale Haber and Haber and has COLUM											INTEL VTUNE AMPLIFIE
Basic Hotspots Hotspots by CPU Ut											INTEEN TUNE AMPLITIE
🕀 Analysis Target 📣 Analysis Type 🔛 Collecti	on Log 👔 Summary 🚳 Bottom-up 🚳 C	aller/Callee 4	Top-dawn Tree	· Platfi	Irm						
ouping: Function / Call Stack									• 🛠 🛛		
Function / Call Stack		1	CPU Time *	- 21		Overho	of Texas		North	Viewing + 1 of 5 + selected stat	
Function / Use stack	Effective Time by Utilization	Indexerc -	Spin Time	Other	Creetion		ad Time Reduction	Alonios Ot			6 (0.040s of 0.130s)
NKL VMU8IdSub-20HAym	130.179ms	0003	(ms	Ctris	0ms	Qms	Ors		rs ibriki vril avi612.so		ML]@dbub_20HAynn - Junknown a ERVICE10threader d 2i 10+0x25
dKL VML]@dLinearFrac_EXHAym	129.378ms	Orns	Gms	Ceres	Genes	Cirros	OTS		res ibmkl_yml_avo617.so		crotask+0s92 - Junknown source (i
KL VML @dMui Z0HAy1n	110.000ms	Oms	Crns	Cms	Oms	Oms	015		ns ibmki vml avof512.so	m itismat soliCroot/D depatch	cri+0xt9 - junknown source filei
KL VML @dErf_Z0HAynn	70.663ms	0005	<ms< td=""><td>Crns</td><td>Qms</td><td>Oms</td><td>0.115</td><td></td><td>ibmki vni avo512.so</td><td>m itmid yml awrite salisterh n</td><td>point frame]+6x3 - [urknown source</td></ms<>	Crns	Qms	Oms	0.115		ibmki vni avo512.so	m itmid yml awrite salisterh n	point frame]+6x3 - [urknown source
KL VML)@dAdd_20HAym	39.420ms	0:03	Crns	0mB	0ms	Oms	0.18		ibmkj_vml_avx512.so	In Dismo5 sol imp tack called	
IKL VML]@dDiv_20HAyrm	30.274ms	Oms	Oms	Cens	Gens	Oms	Ors		ns ibmki_vml_avo512.so	In Discost collocated body for	
KL VML)@dLn_ZOHAynn	29.705ms	Oms	Cms	Cents	Oms	Qms	015		ibmki_vml_avo512.so		ERVICEIRIthreader d 2/ 10+0x44
MKL VML(@dExp_Z0HAynn	20.431ms	0ms	(ms	0ms 0ms	0ms 0ms	0ms	015		is ibmki_vml_avo512.so ibmki_vml_avo512.so		a6 - [unknown source file]
MKL VMLj@dinvSqt_20HAytn INTERNAL 25 arc kmp barrier opp 71f3c		10.001/ms	oms Oms	Cens	Otras	Ottos	Ors		ibiniti viil avots12.90	m unath opython-38m-a86_64-in	nue-graziotrivial_three_operand_l
potate_rels	9.295ms	Dus	Ons	Cents	Otres	Otres	DIS		Bpython3.6m.so.1.0		nux-gnu.solexecute legacy churc
INTERNAL 25 src kmp barrier cpp 71/3:		9.568ms	Crist	oms	Oms	Oms	015		ns ibiomp5.so		nux-gnu.solPyUFunc_GenericFunc nux-gnu.soluture_generit_call.h+0
										itpython3.6m.so.1.0[_PyObject	ct_FastCalDict+0x8a - abstract c:2
										Ibpython3.6m.so.1.0PyObject	CalFunctionOb/Args+Oxd1 - abst
											4-Inux-gnu.solarray_subtract+0x26
										ibpython3.6m.so.1.0binary_op	
										ibpythend.tim.sc.1.0binery_cp	
										runne.pvblack_scholes+0x51	er_Subtract+0xe - abstract.c:924
Q: + − r r № 12:	0,40 0,55	0.85			1.25	1.0		1.05	1.05 2		
	0,05	0.05				1.0		1.00	100	25 226 24	invest
OMP Master Trased IN (TID				100							Stante S
											PU Time
OMP Wolker Thread #1 (TID											Spin and Overhead
OMP Wolker Thread #1 (TID											
OMP Wolker Thread #2 (TID											CFU Sample
OMP Wolker Thread #1 (TID											CPU Utilization
OMP Woller Thread M2 (TID											CPU Ublication
OMP Weder Tress #2 (TID											CPU Utilization
OMP Wolker Thread V2 (TID											CPU Utilization
ONP Welter Thread VI. (TID											CPU Utilization
OMP Weeker Thread VE (TID											CPU Ublication
OMP Welder Thread 45 (110											CPU Ublication
OVER Weeker Thread VI2 (110)											CPU Utilization

sklearn/kmeans.ipynb – 15 Minutes

- 1) What is the K-Means Algorithm?
- 2) How does the K-Means Algorithm work?
- 3) Select different sizes for n_colors (K) and compare the training runtime
- 4) Implement the inference function "labels = "
- 5) What is the random codebook and how does it compare to K-Means?
- 6) Compare the outcome images with different cluster sizes (K)
- 7) Implement the function to disable our DAAL optimizations underneath Scikit-Learn and do some tests without it (plain vanilla Scikit-Learn)

K-Means Demo Summary

- K-Means is a powerful clustering algorithm
- SciKit-Learn K-Means is accelerated with DAAL inside IDP
- The optimized K-Means runs faster and consumes less memory
- We found a way to compress images!!! ⁽²⁾

sklearn/svm.ipynb – 15 Minutes

- 1) What is a Support Vector Machine (SVM)?
- 2) How does the SVM work?
- 3) What is the MNIST dataset? Can classic ML algorithms classify Images?
- 4) How can a binary classifier categorize 10 different classes?
- 5) How is the data is partitioned? And why?
- 6) What is a confusion matrix?
- 7) Implement the missing code to show mispredicted images
- 8) Do you recognize patterns from the mispredicted images?

SVM Demo Summary

- SVM is a powerful classifier
- Complex classification is not an exclusively deep learning field
- Classic machine learning, wherever applicable can safe time and resources
- The confusion matrix is actually not so confusing
- NumPy is powerful, can transform and operate on whole arrays

Save your accomplishments

\$./05_pack_work.sh

" \$ 11 ~/Downloads/ total 28 -rw-rw-r--. 1 workshop workshop 24692 Nov 21 15:14 idp_ml.tar.bz2

From your system:

scp -r workshop@\${IP}:~/Downloads/* .

TERMINATE INSTANCES

LUNCH BREAK

... finally ...

Optimization Notice

DEEP LEARNING TOOLS

INTEL PERFORMANCE LIBRARIES

INTEL® MATH KERNEL LIBRARY FOR DEEP NEURAL NETWORKS (MKL-DNN) Intel® Machine Learning Scaling Library (MLSL)

INTEL® MATH KERNEL LIBRARY FOR DEEP NEURAL NETWORKS Intel® MKL-DNN

INTEL[®] MKL-DNN

Intel's Open-Source <u>Math Kernel Library for Deep Neural Networks</u>

For developers of deep learning frameworks featuring optimized performance on Intel hardware

Distribution Details

- Open Source
- Apache 2.0 License
- Common DNN APIs across all Intel hardware.
- Rapid release cycles, iterated with the DL community, to best support industry framework integration.
- Highly vectorized & threaded for maximal performance, based on the popular Intel[®] MKL library.

github.com/01org/mkl-dnn

All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice.

Optimization Notice

Deep Learning Software Stack for Intel processors

Deep learning and AI ecosystem includes edge and datacenter applications.

- Open source frameworks (Tensorflow*, MXNet*, CNTK*, PaddlePaddle*)
- Intel deep learning products (Neon[™] framework, BigDL, OpenVINO[™] toolkit)
- In-house user applications

Intel MKL and Intel MKL-DNN optimize deep learning applications for Intel processors :

- through the collaboration with framework maintainers to upstream changes (Tensorflow*, MXNet*, PaddlePaddle*, CNTK*)
- through Intel optimized forks (Caffe*, Torch*, Theano*)
- by partnering to enable proprietary solutions

Intel MKL-DNN is an open source performance library for deep learning applications (available at https://github.com/intel/mkl-dnn)

- Fast open source implementations for wide range of DNN functions
- · Early access to new and experimental functionality
- Open for community contributions

Intel MKL is a proprietary performance library for wide range of math and science applications

Distribution: Intel Registration Center, package repositories (apt, yum, conda, pip)

Optimization Notice

Examples of speedups on Intel® Xeon® Scalable Processors

INTEL-OPTIMIZED TENSORFLOW PERFORMANCE AT A GLANCE

Source: <u>TENSORFLOW OPTIMIZED FOR INTEL[®] XEON™</u>

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. *Other names and brands may be claimed as the property of others

TensorFlow with Intel MKL/MKL-DNN

Use Intel Distribution for Python*

- Uses Intel MKL for many NumPy operations thus supports MKL_VERBOSE=1
- Available via <u>Conda</u>, or <u>YUM</u> and <u>APT</u> package managers

<u>Use pre-built Tensorflow* wheels</u> or build TensorFlow* with `bazel build -- config=mkl`

- Building from source required for integration with Intel Vtune[™] Amplifier
- Follow the <u>CPU optimization</u> advices including setting affinity and # of intra- and inter- ops threads
- More Intel MKL-DNN-related optimizations are slated for the next version: Use the latest TensorFlow* master if possible

Intel distribution of Caffe

A fork of BVLC Caffe* maintained by Intel

The best-performing CPU framework for CNNs

<u>Supports low-precision inference</u> on Intel Xeon Scalable Processors (formerly known as Skylake)

Intel MKL-DNN overview

Features:

- Training (float32) and inference (float32, int8)
- CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)
- Optimized for Intel processors

Portability:

- Compilers: Intel C++ compiler/Clang/GCC/MSVC*
- OSes: Linux*, Windows*, Mac*
- Threading: OpenMP*, TBB

Frameworks that use Intel MKL-DNN:

IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle*

CNTK*, OpenVino, DeepBench*

Primitives	Class
 (De-)Convolution Inner Product Vanilla RNN, LSTM, GRU 	Compute intensive operation s
 Pooling AVG/MAX Batch Normalization Local Response Normalization Activations (ReLU, Tanh, Softmax,) Sum 	Memory bandwidt h limited operation s
ReorderConcatenation	Data movemen t

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 176

KEY PERFORMANCE CONSIDERATIONS ON INTEL PROCESSORS

Memory layouts

Most popular memory layouts for image recognition are **nhwc** and **nchw**

 Challenging for Intel processors either for vectorization or for memory accesses (cache thrashing)

Intel MKL-DNN convolutions use blocked layouts

- Example: nhwc with channels blocked by 16 nChw16c
- Convolutions define which layouts are to be used by other primitives
- Optimized frameworks track memory layouts and perform reorders only when necessary

Fusing computations

On Intel processors a high % of time is typically spent in BW-limited ops

 ~40% of ResNet-50, even higher for inference

The solution is to fuse BW-limited ops with convolutions or one with another to reduce the # of memory accesses

- Conv+ReLU+Sum, BatchNorm+ReLU, etc
- Done for inference, WIP for training

The FWKs are expected to be able to detect fusion opportunities

IntelCaffe already supports this

Major impact on implementation

- All the impls. must be made aware of the fusion to get max performance
- Intel MKL-DNN team is looking for scalable solutions to this problem

Low-precision inference

Proven only for certain CNNs FP32 model F32 model by IntelCaffe at the moment Quantize model A trained float32 model quantized to int8 INT8 model FP32 Some operations still run in Primitive -> FP32 Primitive FP32 INT8 INT8 float32 to preserve accuracy Scale

Intel MKL-DNN integration levels

Intel MKL-DNN is designed for best performance.

However, topology level performance will depend on Intel MKL-DNN integration.

- Naïve integration will have reorder • overheads.
- Better integration will propagate ۲ layouts to reduce reorders.
- Best integration will fuse memory • bound layers with compute intensive ones or with each other.

Example: inference flow

INTEL MKL-DNN LIBRARY PHILOSOPHY

Intel MKL-DNN concepts

Descriptor: a structure describing memory and computation properties **Primitive**: a handle to a particular compute operation

- Examples: Convolution, ReLU, Batch Normalization, etc.
- Three key operations on primitives: create, execute and destroy
- Separate create and destroy steps help amortize setup costs (memory allocation, code generation, etc.) across multiple calls to execute

Memory: a handle to data

Stream: a handle to an execution context

Engine: a handle to an execution device

Layout propagation: the steps to create a primitive

1. Create memory descriptors

- These describe the shapes and memory layouts of the tensors the primitive will compute on
- Use the layout 'any' as much as possible for every input/output/weights if supported (e.g. convolution or RNN). Otherwise, use the same layout as the previous layer output.
- 2. Create primitive descriptor and primitive
- 3. Create needed input reorders
 - Query the primitive for the input/output/weight layout it expects
 - Create the needed memory buffers and reorder primitives to accordingly reorder the data to the appropriate layout
- 4. Enqueue primitives and reorders in the stream queue for execution

Primitive attributes

Fusing layers through post-ops

- 1. Create a post_ops structure
- 2. Append the layers to the post-ops structure (currently supports sum and elementwise operations)
- 3. Pass the post-op structure to the primitive descriptor creation through attributes

Quantized models support through attributes (more details)

- 1. Set the scaling factors and rounding mode in an attribute structure
- 2. Pass the attribute structure to the primitive descriptor creation

PROFILING

Integration with Intel VTune Amplifier

Full application analysis

Report types:

- CPU utilization
- Parallelization efficiency
- Memory traffic

Profiling of run-time generated code must be enabled at compile time

Frame Domain / Frame / Function / Call Stack 🔺	INST RETIRED.ANY CPU CLK UNHALTED.THREAD		CPU CLK UNHALTED.REF TSC	
▶ INTERNAL 25 src kmp bi	0	0)	
▶ apic_timer_interrupt	0	0	C	
jit_avx512_common_conv_fwd_kerne	390,000,585	144,000,216	168,000,252	
mkldnn::impl::cpu::_jit_avx512_comm	2,000,003	0	(
FW_id011_Convolution_res2b_branch2c	1,290,001,935	1,220,001,830	1,342,002,013	
FW_id012_Split_res2b_res2b_relu_0_sp				
FW_id013_Pooling_res2b_res2b_relu_0_	54,000,081	458,000,687	450,000,67	
v 1	54,000,081	458,000,687	450,000,67	
▶kmp_join_barrier	0	0		
INTERNAL_25src_kmp_b;	0	8,000,012	446,000,66	
▶ jit_uni_pool_kernel_f32	36,000,054	442,000,663		
 ktime_get mkldnn::impl::cpu::jit uni pooling fwc 	18.000.027	8,000,012	4.000.000	
Thisiannmpicpajit_ani_pooling_two	18,000,027	8,000,012	4,000,00	
		59060ms	₅ 59071.275ms	
E OMP Master Thread #0 (TID:				
OMP Worker Thread #2 (TID:			Frame	
OMP Worker Thread #23 (TI			Start: 59070.452msDu Frame: 1	
FP_ARITH_INST_RETIRED.5	1 1 1 1 1 1 1 1 1		Frame Domain: FW_id	
는 INST_RETIRED.ANY			Frame Duration Type: I	

building Intel MKL-DNN using cmake cmake -DVTUNEROOT=/opt/intel/vtune_amplifier_2018 .. && make install

an alternative: building Intel MKL-DNN using sources directly, e.g. in TensorFlow CFLAGS="-I\$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L\$VTUNEROOT/lib64 -ljitprofiling" bazel build

Optimization Notice

Intel MKL-DNN verbose mode overview

Simple yet powerful analysis tool:

- Similar to Intel MKL verbose
- Enabled via environment variable or function call
- Output is in CSV format

Output includes:

- The marker, state and primitive kind
- Implementation details (e.g. jit:avx2)
- Primitive parameters
- Creation or execution time (in ms)

Example below (details here)

\$ # MKLDNN_VERBOSE is unset \$./examples/simple-net-c passed \$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime \$./examples/simple-net-c # | grep "mkldnn_verbose" mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_Ohwi8o,num:1,96x3x11x11,12.2249 mkldnn_verbose,exec,eltwise,jit:avx2,forward_training,fdata:nChw8c,alg:eltwise_relu,mb8ic96ih55iw55,0.437988 mkldnn_verbose,exec,lrn,jit:avx2,forward_training,fdata:nChw8c,alg:lrn_across_channels,mb8ic96ih55iw55,1.70093 mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c_out:f32_nchw,num:1,8x96x27x27,0.924805 passed

Optimization Notice

Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not enabled in Intel MKL-DNN

Integration gaps: your hotspot uses Intel MKL-DNN but runs much faster in a standalone benchmark (more details in the hands-on session)

Intel MKL-DNN performance issue: your hotspot uses Intel MKL-DNN but is very slow given its parameters

In any of these cases, feel free to contact the Intel MKL-DNN team through the Github* page <u>issues section</u>.

Optimization Notice

KEY TAKEAWAYS

Key Takeaways

- 1. Application developers already benefit of Intel MKL-DNN through integration in popular frameworks
- 2. Framework developers can get better performance on Intel processors by integrating Intel MKL-DNN
- 3. There are different levels of integration, and depending on the level you will get different performance
- 4. Profiling can help you identify performance gaps due to
 - Integration not fully enabling Intel MKL-DNN potential (more on that in the hands-on session).
 - Performance sensitive function not enabled with Intel MKL-DNN (make requests on <u>Github</u>*)
 - Performance issue in Intel MKL-DNN (raise the issue on <u>Github</u>*)

Optimization Notice

INTEL® MACHINE LEARNING SCALING LIBRARY INTEL® MLSL

Deep Learning Training

Complex Networks with billions of parameters can take days to train on a modern processor*

Hence, the need to reduce time-to-train using a cluster of processing nodes

* Shihao Ji, S. V. N. Viswanathan, Nadathur Satish, Michael Anderson, and Pradeep Dubey. Blackout: Speeding up Recurrent Neural Network Language Models with very large vocabularies. <u>http://arxiv.org/pdf/1511.06909v5.pdf</u>. ICLR 2016

Deep Learning Training

- Forward propagation: calculate loss function based on the input batch and current weights;
- Backward propagation: calculate error gradients w.r.t. weights for all layers (using chain rule);
- Weights update: use gradients to update weights; there are different algorithms exist: vanilla SGD, Momentum, Adam, etc.

SGD: $W_n^* = W_n - \alpha * \partial E / \partial W_n$ or variants

Optimization Notice

WHY MACHINE LEARNING SCALING LIBRARY (MLSL)?

Scale Out Deep Learning: Requirements

- Choosing optimal work partitioning strategy
- Enabling scalability for small/large batch size
- Reducing communication volume
- Choosing optimal communication algorithm
- Prioritizing latency-bound communication
- Portable / efficient implementation
- ✓ Workload coverage across CNNs, RNNs, LSTMs, ...
- Integration with Deep Learning Frameworks

Communication dependent on work partitioning strategy Data parallelism = Allreduce (or) Reduce_Scatter + Allgather Model parallelism = AlltoAll

Optimization Notice

MLSL : Key features & ideas

Abstraction:

 MLSL abstracts communication patterns and backend and supports data/model/hybrid parallelism

Flexibility:

- C, C++, Python languages are supported out of box
 Usability
- MLSL API is being designed to be applicable to variety of popular FWs

Optimizations:

- MLSL uses not only the existing MPI functionality, but also extensions
- Domain awareness to drive MPI in a performant way
- Best performance across interconnects
 – transparent to frameworks

MLSL Architecture

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Fully connected layer

 $I \in \mathbb{R}^{NxK}$ Input

 \sim

п

z

 $W \in R^{K \times M}$ Weights or model

 $O \in R^{N \times M}$ Output or activations

Several options for parallelization

Data parallelism:

- Replicate the model across nodes;
- Feed each node with its own batch of input data;
- Communication for gradients is required to get their average across nodes;

Input data

- Can be either
 - AllReduce pattern
 - ReduceScatter + AllGather patterns

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. intel

Model parallelism (#1):

- Model is split across nodes;
- Feed each node with slice of input data;
- Communication for partial activations is required to proceed to the next layer;

Optimization Notice

Model parallelism (#2):

- Model is split across nodes;
- Feed each node with the same batch of input data;
- Communication for partial activations is required to gather the result and proceed further;

Optimization Notice

Node Weight Group 1 transfer Node Group 2 Activation transfer

Hybrid parallelism:

- Split nodes into groups;
- Model parallelism inside the groups;
- Data parallelism between the groups;
- Communicate both gradients and activations;

Optimization Notice

MLSL: Parallelism at Scale

General rule of thumb

- Use data parallelism when activations > weights
- Use model parallelism when weights > activations

Side effects of data and model parallelism

- Data parallelism at scale makes activations << weights
- Model parallelism at scale makes weights << activations
- Communication time dominates at scale

MLSL : Message prioritization

Optimization Notice

MLSL : DL Layer API

MLSL calls hide communication patterns used underneath:

- StartComm may involve reduce_scatter or all2all depending on the distributions or may not require any communication at all
- StartGradientComm/WaitGradientComm hides the details of distributed solver implementation
- API hides the details of communication backend
- Ideal for Caffe likes

Optimization Notice

MLSL : Collective API

Goal:

Ease of enabling graph-based frameworks (allreduce op)

Collective Ops supported (non-blocking):

- Reduce/Allreduce
- Alltoall(v)
- Gather/Allgather(v)
- Scatter, Reduce_Scatter
- Bcast

Features:

- High performance (EP-based)
- Efficient asynchronous progress
- Prioritization (WIP)

/*Create MLSL environment*/
Environment env = Environment::GetEnv();
env.Init(&argc, &argv);

/* Create distribution

- * Arguments define how compute resources are split
- * between GROUP_DATA and GROUP_MODEL
- * Example below: all nodes belong to GROUP_DATA*/ Distribution* distribution = env.CreateDistribution(nodeCount, 1);

/*Handle for non-blocking comm operation*/ CommReq cr;

/*Start non-blocking op*/ distribution->AllReduce(sendbuffer, recvbuffer, size, DT_FLOAT, RT_SUM, GROUP_ALL, &cr);

/*Blocking wait call*/ env.Wait(&cr);

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 206

MLSL: Features

Current features:

- ✓ Non-blocking DL Layer and Collective interface
- ✓ Python/C++/C bindings
- ✓ Asynchronous communication progression
- ✓ Optimized algorithms
- ✓ Support for data, model, hybrid parallelism
- Initial support for quantization available in IntelCaffe/MLSL
- ✓ Built-in inversed prioritization (through env. variable) – available in IntelCaffe/MLSL

https://github.com/intel/MLSL

• Upcoming features (in development or research):

- Explicit prioritization API
- ✓ Sparse data allreduce
- ✓ Gradient quantization and compression
- Cloud native features

Scale-out in Cloud environment

DAWNbench:

S	Apr 2018	ResNet50 Intel(R) Corporation source	3:25:55	N/A	93.02%	128 nodes with Xeon Platinum 8124M / 144 GB / 36 Cores (Amazon EC2 [c5.18xlarge])	Intel(R) Optimized Caffe
S	Apr 2018	ResNet56 Intel(R) Corporation source	3:31:47	N/A	93.11%	128 nodes with Xeon Platinum 8124M / 144 GB / 36 Cores (Amazon EC2 [c5.18xlarge])	Intel(R) Optimized Caffe
S	Apr 2018	ResNet50 Intel(R) Corporation source	6:09:50	N/A	93.05%	64 nodes with Xeon Platinum 8124M / 144 GB / 36 Cores (Amazon EC2 [c5.18xlarge])	Intel(R) Optimized Caffe

*RN50:

- 81 epochs for 64 nodes
- 85 epochs for 128 nodes
- 94% efficiency scaling from 64 to 128 nodes

Optimization Notice

Scale-out in HPC environment

- IntelCaffe: MLSL-based multinode solution; Horovod, nGraph: WIP
- MLSL is enabled in Baidu's DeepBench
- SURFSara: used IntelCaffe/MLSL to achieve ResNet50 time-totrain <u>record (</u>~40 minutes, 768 SKX) *
- UC-Berkeley, TACC, and UC-Davis: 14 minutes TTT for ResNet50 with IntelCaffe/MLSL (2048 KNL) **

TensorFlow scaling on IA

Deep Learning at 15PF!

Deep Learning Applied to Science Problems in High Energy Physics and Climate Simulation

Novel Hybrid Parameter Scheme

Highest Performance and Scaling Reported for Deep Learning To Date:

15 PF peak, sustained 13.27 PF on 9K Cori nodes * 📖

Common Tool Chain of MKL-DNN, MLSL, IntelCaffe Scales DL from 100s

to 1000s of Xeon and Xeon Phi nodes: benchmarks and science apps

Fig 1. Scaling efficiency on Stampede2 (speedup vs number of workers). This plot starts from scaling on 4 workers, which has a scaling factor of 1.

IntelCaffe/MLSL

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. * https://arxiv.org/pdf/1711.04291.pdf

** https://arxiv.org/pdf/1709.05011.pdf

Deep Learning at 15PF *

- Joint work between NERSC, Stanford University and Intel
- <u>Novel approach to distributed SGD</u>: synchronous within the group, asynchronous across the groups
- <u>Record scaling</u>: in terms of number of nodes collaboratively training the same model (9600 KNL)
- <u>Record peak performance</u>: ~15PF
- <u>Communication approach</u>: MLSL for intragroup communication, MPI for intergroup
- The mechanism is available in IntelCaffe/MLSL

INFERENCE IN PRODUCTION?

(Open Visual Inference & Neural Network Optimization)

What's Inside the OpenVINO[™] toolkit

OS Support CentOS* 7.4 (64 bit) Ubuntu* 16.04.3 LTS (64 bit) Microsoft Windows* 10 (64 bit) Yocto Project* version Poky Jethro v2.0.3 (64 bit)

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Intel[®] Deep Learning Deployment Toolkit

Take Full Advantage of the Power of Intel® Architecture

Model Optimizer

- What it is: Preparation step -> imports trained models
- Why important: Optimizes for performance/space with conservative topology transformations; biggest boost is from conversion to data types matching hardware.

Inference Engine

- What it is: High-level inference API
- Why important: Interface is implemented as dynamically loaded plugins for each hardware type. Delivers best performance for each type without requiring users to implement and maintain multiple code pathways.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Improve Performance with Model Optimizer

- Easy to use, Python*-based workflow does not require rebuilding frameworks
- Import Models from various supported frameworks Caffe*, TensorFlow*, MXNet*, ONNX*, Kaldi*.
- More than 100 models for Caffe, MXNet and TensorFlow validated. All public models on ONNX* model zoo supported.
- With support for Kaldi, the model optimizer extends inferencing for non-vision networks.
- IR files for models using standard layers or user-provided custom layers do not require Caffe.
- Fallback to original framework is possible in cases of unsupported layers, but requires original framework

Optimization Notice

Optimal Model Performance Using the Inference Engine

- Simple & Unified API for Inference across all Intel[®] architecture
- Optimized inference on large IA hardware targets (CPU/GEN/FPGA)
- Heterogeneity support allows execution of layers across hardware types
- Asynchronous execution improves performance
- Futureproof/scale your development for future Intel[®] processors

GPU = Intel CPU with integrated graphics processing unit/Intel® Processor Graphics/GEN GNA = Gaussian mixture model and Neural Network Accelerator

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Transform Models & Data into Results & Intelligence

OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Increase Deep Learning Workload Performance on Public Models using OpenVINO[™] toolkit & Intel[®] Architecture

Fast Results on Intel Hardware, even before using Accelerators

¹Depending on workload, quality/resolution for FP16 may be marginally impacted. A performance/quality tradeoff from FP32 to FP16 can affect accuracy; customers are encouraged to experiment to find what works best for their situation. The benchmark results reported in this deck may need to be revised as additional testing is conducted. Performance results are based on testing as of April 10, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Configuration: Testing by Intel as of April 10, 2018. Intel[®] Core[™] i7-6700K CPU @ 2.90GHz fixed, GPU GT2 @ 1.00GHz fixed Internal ONLY testing, Test v312.30 – Ubuntu* 16.04, OpenVINO[™] 2018 RC4. Tests were based on various parameters such as model used (these are public), batch size, and other factors. Different models can be accelerated with different Intel hardware solutions, yet use the same Intel software tools.

Copyright © 2019. Intel Corporation. All rights reserved.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3 and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel Microprocessor-dependent optimizations in this fixed product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel *Other names and brands may be claimed as the property of others microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

¹Depending on workload, guality/resolution for FP16 may be marginally impacted. A performance/guality tradeoff from FP32 to FP16 can affect accuracy; customers are encouraged to experiment to find what works best for their situation. Performance results are based on testing as of June 13, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Configuration: Testing by Intel as of June 13, 2018. Intel® Core™ i7-6700K CPU @ 2.90GHz fixed, GPU GT2 @ 1.00GHz fixed Internal ONLY testing, Test v3.15.21 – Ubuntu* 16.04, OpenVINO 2018 RC4, Intel® Arria® 10 FPGA 1150GX. Tests were based on various parameters such as model used (these are public), batch size, and other factors. Different models can be accelerated with different Intel hardware solutions, yet use the same Intel software tools.

Copyright © 2019. Intel Corporation. All rights reserved.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2. SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel *Other names and brands may be claimed as the property of others, microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

218

SECURITY BARRIER RECOGNITION MODEL USING INTEL® DEEP LEARNING DEPLOYMENT TOOLKIT

Load Input Image(s)

Run Inference 1: Model vehicle-license-platedetection-barrier-0007

Detects Vehicles

Run Inference 2: Model vehicle-attributesrecognition-barrier-0010

Classifies vehicle attributes

Run Inference 3: Model license-plate-recognitionbarrier-0001

Detects License Plates

Display Results

Vehicle Detection Time : 30.10 ms (33.23 fps) Vehicle Attribs Time (averaged over 2 detections) :6.26 ms (159.71 fps) LPR Time (averaged over 1 detection) :5.04 ms (198.43 fps)

INTRODUCTION TO TENSORFLOW WITH INTEL® OPTIMIZATIONS

Agenda

- Introduction to TensorFlow
- Neural Networks with TensorFlow
- Convolutional Neural Network with TensorFlow to perform image classification
- Build and Install Intel[®] optimized TensorFlow
- Optimizations and performance comparisons

INTEL AI FRAMEWORKS

Popular DL Frameworks are now optimized for CPU!

CHOOSE YOUR FAVORITE FRAMEWORK

See installation guides at ai.intel.com/framework-optimizations/

and others to be enabled via Intel® nGraph™ Library

SEE ALSO: Machine Learning Libraries for Python (Scikit-learn, Pandas, NumPy), R (Cart, randomForest, e1071), Distributed (MlLib on Spark, Mahout) *Limited availability: today Other names and brands may be claimed as the property of others.

Optimization Notice

Getting intel-optimized tensorflow: using pip

Python 2.7

pip install https://anaconda.org/intel/tensorflow/1.6.0/download/tensorflow-1.6.0cp27-cp27mu-linux_x86_64.whl

Python 3.5
pip install https://anaconda.org/intel/tensorflow/1.6.0/download/tensorflow-1.6.0cp35-cp35m-linux_x86_64.whl

Python 3.6
pip install https://anaconda.org/intel/tensorflow/1.6.0/download/tensorflow-1.6.0cp36-cp36m-linux_x86_64.whl

Optimization Notice

Build TensorFlow MKL-DNN

Build TensorFlow (details: http://libxsmm.readthedocs.io/tensorflow/)

- \$ git clone <u>https://github.com/hfp/tensorflow-xsmm.git</u>
- (or rely on https://github.com/tensorflow/tensorflow/releases/latest)
 - \$ cd tensorflow-xsmm; ./configure
 - \$ bazel build -c opt --copt=-O2 \
 --cxxopt=-D_GLIBCXX_USE_CXX11_ABI=0 \
 --copt=-mfma --copt=-mavx2 \
 //tensorflow/tools/pip_package:build_pip_package
 - \$ bazel-bin/tensorflow/tools/pip_package/build_pip_package \
 /tmp/tensorflow_pkg

* AVX-512: --copt=-mfma --copt=-mavx512f --copt=-mavx512cd --copt=-mavx512bw --copt=-mavx512vl --copt=-mavx512dq

Build TensorFlow (cont.)

Package the TensorFlow Wheel file

- \$ bazel-bin/tensorflow/tools/pip_package/build_pip_package \
 /tmp/tensorflow_pkg
- Optional (save Wheel file for future installation):
 - \$ cp /tmp/tensorflow_pkg/tensorflow-1.2.1-cp27-cp27mu-linux_x86_64.whl \
 /path/to/mysafeplace

Install the TensorFlow Wheel

- [user] \$ pip install --user --upgrade -I \ /tmp/tensorflow_pkg/tensorflow-1.2.1-cp27-cp27mu-linux_x86_64.whl
- [root] \$ sudo -H pip install --upgrade -I \ /tmp/tensorflow_pkg/tensorflow-1.2.1-cp27-cp27mu-linux_x86_64.whl

TensorFlow History

- 2nd gen. open source ML framework from Google*
 - Widely used by Google's: search, Gmail, photos, translate, etc.
 - Open source implementation released in November 2015
- Core in C++, frontend wrapper is in Python
 - Core: key computational kernel, extensible per user-ops
 - Python script to specify/drive computation
- Runtime
 - Multi-node originally per GRPC protocol, MPI added later
 - Own threading runtime (not OpenMP, TBB, etc.)

Milestones

02'16: TensorFlow Serving

02'16: TensorFlow Serving 01'17: Accelerated Linear Algebra (XLA)

02'17: TensorFlow Fold

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. © 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Why do we need Optimizations for CPU?

- TensorFlow* on CPU has been very slow
- With optimization; up to 14x Speedup in Training and 3.2x Speedup in Inference! Up-streamed and Ready to Use!

Main TensorFlow API Classes

Graph

Container for operations and tensors

Operation

- Nodes in the graph
- Represent computations

Tensor

- Edges in the graph
- Represent data

Computation Graph

Optimization Notice

Computation Graph

Optimization Notice

Data Flow

tf.constant() creates an Operation that returns a fixed value tf.placeholder() defines explicit input that vary run-to-run

Optimization Notice

We use a Session object to execute graphs. Each Session is dedicated to a single graph.

```
Session sess
Graph: default
Variable values:
```

>>> sess = tf.Session()

Optimization Notice

ConfigProto is used to set configurations of the Session object.

>>> tf.Session(config=config)

Optimization Notice

placeholders require data to fill them in when the graph is run

We do this by creating a dictionary mapping Tensor keys to numeric values

Optimization Notice

We execute the graph with sess.run (fetches, feed_dict)

sess.run returns the fetched values as a NumPy array

```
>>> out = sess.run(d, feed_dict=feed_dict)
```


Optimization Notice

Two-Step Programming Pattern

1. Define a computation graph

2. Run the graph

Optimization Notice

NEURAL NETWORKS WITH TENSORFLOW

Neural Networks

Use biology as inspiration for math model Neurons:

- Get signals from previous neurons
- Generate signal (or not) according to inputs
- Pass that signal on to future neurons

By layering many neurons, can create complex model

Reads roughly the same as a TensorFlow graph

Inside a single neuron (TensorFlow graph)

Inside a single neuron (TensorFlow graph)

Optimization Notice

To keep visual noise down, we'll use this notation for now

Optimization Notice

Optimization Notice

CONVOLUTIONAL NEURAL NETWORK WITH TENSORFLOW

Convolutional Neural Nets

Optimization Notice

Convolution In TensorFlow

tf.nn.conv2d(input, filter, strides, padding)
input: 4d tensor [batch_size, height, width, channels]
filter: 4d: [height, width, channels_in, channels_out]

• Generally a Variable

strides: 4d: [1, vert_stride, horiz_strid, 1]

First and last dimensions must be 1 (helps with under-the-hood math)
 padding: string: 'SAME' or 'VALID'

TRAINING AND INFERENCE

Optimization Notice

INTEL® TENSORFLOW OPTIMIZATIONS

intel-tensorflow optimizations

- 1. Operator optimizations
- 2. Graph optimizations
- 3. System optimizations

Operator optimizations

In TensorFlow, computation graph is a data-flow graph.

Operator optimizations

- Replace default (Eigen) kernels by highly-optimized kernels (using Intel[®] MKL-DNN)
- Intel[®] MKL-DNN has optimized a set of TensorFlow operations.

Library is open-source (<u>https://github.com/intel/mkl-dnn</u>) and downloaded automatically when building TensorFlow.

Forward	Backward
Conv2D	Conv2DGrad
Relu, TanH, ELU	ReLUGrad, TanHGrad, ELUGrad
MaxPooling	MaxPoolingGrad
AvgPooling	AvgPoolingGrad
BatchNorm	BatchNormGrad
LRN	LRNGrad
MatMul, Concat	

OPERATOR OPTIMIZATIONS IN RESNET50

Record Save Load timelin	e.json		
/job:localhost/replica:0/task:0/device:CPU:0 Compute (pid 1)			
	vice:CPU:0 Compute (p	oid 1)	
D			
1			
2	me マ Wall Duration ▼ Self time マ dConv2DBackpropFilter 545.502 ms 545.502 ms dConv2DBackpropIput 440.090 ms 440.090 ms dConv2DBackpropInput 440.090 ms 391.094 ms dFusedBatchNormGrad 184.920 ms 184.920 ms dFusedBatchNormWithRelu 158.366 ms 158.366 ms dReluGrad 155.874 ms 155.874 ms dAdd 109.858 ms 109.858 ms dAdd 103.248 ms 103.248 ms		
-			
	(2005)		
	es (3005)		
Name 🗢		Wall Duration 🔻	Self time 🗢 🗸
MkIConv2DBackpropFilter		545.502 m	s 545.502 ms
MklConv2DBackpropInput		440.090 ms	s 440.090 ms
MklConv2D		391.094 ms	s 391.094 ms
MkIFusedBatchNormGrad		184.920 ms	s 184.920 ms
MkIFusedBatchNormWithRelu		158.366 m	s 158.366 ms
MkIReluGrad		155.874 ms	s 155.874 ms
MklAdd		109.858 ms	s 109.858 ms
MkIAddN		103.248 ms	s 103.248 ms
Slice		84.905 ms	s 84.905 ms
Pad		38.684 m	s 38.684 ms
<u>ApplyMomentum</u>		32.977 m	s 32.977 ms
L2Loss		28.264 ms	s 28.264 ms
MkIToTf		22.379 m	s 22.379 ms
VariableV2		19.422 m	s 19.422 ms

Intel-optimized TensorFlow timeline

Record Save Load r	n50.eigen.json		View Option	IS
		0 s		5 s
 /job:localhost/replica:0/tas 	k:0/device:CPU:0	Compute (pid 1)		
0				
1				
2				
3				
4				
۶				
1490 items selected.	Slices (1490)			
Name 🗢			Wall Duration 🔻	Self time \bigtriangledown
FusedBatchNormGrad			7,933.108 ms	7,933.108 ms
Conv2DBackpropInput			3,139.385 ms	3,139.385 ms
Conv2DBackpropFilter			2,539.365 ms	2,539.365 ms
FusedBatchNorm			873.292 ms	873.292 ms
Conv2D			640.633 ms	640.633 ms
ReluGrad			74.733 ms	74.733 ms
AddN			68.955 ms	68.955 ms
Add			38.213 ms	38.213 ms
<u>Relu</u>			38.010 ms	38.010 ms

Default TensorFlow timeline

Graph optimizations: fusion

Before Merge

After Merge

Optimization Notice

Graph optimizations: fusion

Before Merge

After Merge

Optimization Notice

Graph optimizations: layout propagation

What is layout?

How do we represent N-D tensor as a 1-D array.

18 92 21 1 8

Better optimized for some operations vs.

Graph optimizations: layout propagation

Converting to/from optimized layout can be less expensive than operating on unoptimized layout.

All MKL-DNN operators use highly-optimized layouts for TensorFlow tensors.

Optimization Notice

Graph optimizations: layout propagation

'intel'

Optimization Notice

System optimizations: load balancing

TensorFlow graphs offer opportunities for parallel execution.

Threading model

- 1. inter_op_parallelism_threads = max number
 of operators that can be executed in parallel
- 2. intra_op_parallelism_threads = max number
 of threads to use for executing an operator
- 3. OMP_NUM_THREADS = MKL-DNN equivalent of intra_op_parallelism_threads

performance GUIDE

tf.ConfigProto is used to set the inter_op_parallelism_threads and intra_op_parallelism_threads configurations of the Session object.

>>> config = tf.ConfigProto()
>>> config.intra_op_parallelism_threads = 56
>>> config.inter_op_parallelism_threads = 2
>>> tf.Session(config=config)

https://www.tensorflow.org/performance/performance_guide#tensorflow_with_intel_mkl_dnn

System optimizations: load balancing

Incorrect setting of threading model parameters can lead to over- or undersubscription, leading to poor performance.

Solution:

- Set these parameters for your model manually.
- Guidelines on TensorFlow webpage

OMP: Error #34: System unable to allocate necessary resources for OMP thread:

OMP: System error #11: Resource temporarily unavailable

OMP: Hint: Try decreasing the value of OMP_NUM_THREADS.

Optimization Notice

performance GUIDE

Setting the threading model correctly

We provide best settings for popular CNN models. (https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor)

Example setting MKL variables with python **os.environ** :

OMP_NUM_THREADS - Specifies the number of threads to use.

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. https://www.tensorflow.org/performance/performance guide#tensorflow with intel mkl dnn

performance GUIDE

	Develop API r	1.8 Deploy	Extend	Community	Versions	Ecosystem 🔫	Q s	Search	GITHUB
Performance Performance Guide Input Pipeline Performance Guide High-Performance Models Benchmarks Fixed Point Quantization XLA XLA Overview Broadcasting semantics Developing a new backend for XLA Using JIT Compilation Operation Semantics Shapes and Layout Using AOT compilation TensorFlow Versions	the instructions supp Beyond using the late Networks (Intel® MK simply referred to as optimizations. The two configuration • intra_op_par the individual p • inter_op_par These configurations the snippet below. For cores. Testing has st	s Intel® Xeon PhI TM sorted by the target est instruction sets. (L-DNN) to TensorFi 'MKL' or TensorFio allelism_thread: esces into this pool allelism_thread: so are set via the tf or both configuration nown that the defau	CPU. Intel® has a low. While the work with MKL. used to optim a : Nodes that a : Nodes that a : All ready m . ConfigProt n options, if t its is effective important and the second second second second the second second second second second second the second secon	dded support fo e name is not co TensorFlow with nize CPU perforr t can use multipl odes are schedu o and passed to hey are unset or for systems ran for systems ran	the Intel® Mi mpletely accu Intel® MKL-D mance by adju e threads to p led in this poor tf.Session set to 0, will d ging from one	rFlow is built from source ath Kernel Library for Deep rate, these optimizations a INN contains details on the sting the thread pools. arallelize their execution w ol. in the config attribute a lefault to the number of log CPU with 4 cores to multi umber of threads in both p	Neural are often MKL ill schedule is shown in gical CPU ple CPUs	Input pip optimiza Data forn Commor RNN Per Building from so. Optimizing Optimizing TensorFI Intel® M	tion nats formance and installing roce for GPU for CPU with KL DNN ng compiler
		o_parallelism_thr o_parallelism_thr					••		
	The Comparing com	piler optimizations	section conta	ains the results c	f tests that us	ed different compiler optir	nizations.		
	TensorFlow with	Intel® MKL DN	N						

Intel® has added optimizations to TensorFlow for Intel® Xeon® and Intel® Xeon Phi[™] though the use of Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) optimized primitives. The optimizations also provide speedups for the consumer line of processors, e.g. is and i7 Intel processors. The Intel published paper TensorFlow^{*} Optimizations on Modern Intel® Architecture contains additional details on the implementation.

https://www.tensorflow.org/performance/performance_guide#tensorflow_with_intel_mkl_dnn

Optimization Notice

Intel-Optimized tensorflow Performance at a glance

TRAINING THROUGHPUT

INFERENCE THROUGHPUT

System configuration:

CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

Intel-optimized TensorFlow ResNet50 training performance compared to default TensorFlow for CPU

Inference and training throughput uses FP32 instructions

Intel-optimized TensorFlow InceptionV3 inference throughput compared to Default TensorFlow for CPU

TensorFlow Source:

https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks:

https://github.com/tensorflow/benchmarks

Unoptimized TensorFlow may not exploit the best performance from Intel CPUs.

Model	Data_fo rmat	Intra_ op	Inter_ op	OMP_NUM_ THREADS	KMP_BLO CKTIME
VGG16	NCHW	56	1	56	1
InceptionV3	NCHW	56	2	56	1
ResNet50	NCHW	56	2	56	1

Software and workloads Used In performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software 20perations and performance tests to assist you in fully evaluating your contemple the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemple the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemple the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemple to the information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation

INTEL-OPTIMIZED TENSORFLOW TRAINING PERFORMANCE

Training Improvement with Intel-optimized TensorFlow over Default (Eigen) CPU Backend

Improvement with Intel-optimized TensorFlow (NHWC)
 Improvement with Intel-optimized TensorFlow (NCHW)

System configuration:

CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlowSource:

https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks:

https://github.com/tensorflow/benchmarks

Model	Data_fo rmat	Intra_ op	Inter_ op	OMP_NUM_ THREADS	KMP_BLO CKTIME
VGG16	NCHW	56	1	56	1
InceptionV3	NCHW	56	2	56	1
ResNet50	NCHW	56	2	56	1

Optimization Notice

INTEL-OPTIMIZED TENSORFLOW INFERENCE PERFORMANCE

Inference Improvement with Intel-optimized TensorFlow over Default (Eigen) CPU Backend

Improvement with Intel-optimized TensorFlow (NHWC)

Improvement with Intel-optimized TensorFlow (NCHW)

System configuration:

CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlowSource:

https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks:

https://github.com/tensorflow/benchmarks

Model	Data_fo rmat	Intra_ op	Inter_ op	OMP_NUM_ THREADS	KMP_BLO CKTIME
VGG16	NCHW	56	1	56	1
InceptionV3	NCHW	56	2	56	1
ResNet50	NCHW	56	2	56	1

Distributed TensorFlow[™] Compare

The parameter server model for distributed training jobs can be configured with different ratios of parameter servers to workers, each with different performance profiles.

The ring all-reduce algorithm allows worker nodes to average gradients and disperse them to all nodes without the need for a parameter server.

Source: https://eng.uber.com/horovod/

'intel

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands may be claimed as the property of others. Copyright © 2018, Intel Corporation.

DISTRIBUTED TRAINING : MULTI-NODE MULTI-SOCKET WITH HOROVOD MPI LIB

Interconnect Fabric (OPA or Ethernet)

Run as Distributed Training Across Multiple Nodes & Multiple Sockets

- No Parameter Server required
- Each socket on each worker node running 2 or more Framework Streams
- Internode communication with horovod MPI library

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands may be claimed as the property of others. Copyright © 2018, Intel Corporation.

HOROVOD for multinode:

from Parameter server (PS):

NP=4				
PER_PROC=10				
HOSTLIST=192	.168.10.110			
MODEL=incept:	ion3			
BS=64				
BATCHES=100				
INTRA=10				
INTER=2				

/usr/lib64/openmpi/bin/mpirun --allow-run-as-root -np \$NP -cpus-per-proc \$PER_PROC map-by socket -H \$HOSTLIST --report-bindings --oversubscribe -x LD_LIBRARY_PATH python
./tf_cnn_benchmarks.py --model \$MODEL --batch_size \$BS --data_format NCHW num_batches \$BATCHES --distortions=True --mkl=True --local_parameter_device cpu num_warmup_batches 10 --optimizer rmsprop --display_every 10 --kmp_blocktime 1 variable_update horovod --horovod_device cpu --num_intra_threads \$INTRA num_inter_threads \$INTER --data_dir /home/tf_imagenet --data_name imagenet

Optimization Notice

Scaling TensorFlow

There is way more to consider when striking for peak performance on distributed deep learning training.:

https://ai.intel.com/white-papers/best-known-methods-forscaling-deep-learning-with-tensorflow-on-intel-xeonprocessor-based-clusters/

	\bigcirc
WHITE PAPER	(intel)
Al Products Group, Intel Corporation	(inter
Customer Solutions Technical Enabling	
Best Practices for Scaling Deep	Learning Training
and Inference with TensorFlow	
and inference with TensorFlow	" On Intel" Xeon-
Processor-Based HPC Infrastru	ctures
rocessor based in c initiastra	ctures
Table of Contents	
Table of Contents 1. Best Practices For Tensorflow [®] On Intel [®] Xeon [®] Processors	
1.1 TensorFlow ⁴ Setup and Installation	
1.2 Install MPI, if not already installed	
1.3 Install Uber's Horovod* Library. 1.4 Installing tf_cnn_benchmarks.	
1.5 Proparing the ImageNet* 2012-1K Dataset	
1.5.1 Steps to download and prepare the ImageNet Dataset	
1.5.2 Already have the ImageNet-TK Dataset	
1.5.3 Dataset Striped on Lustre* 1.6 Example: Running ResNet-50 with tf_cnn_benchmarks.	
1.6.1 tf_cnn_benchmarks: ResNet-50	
1.6.2 Training on Single-Node with Multiple Workers.	
1.6.3 Using Open MPI	
1.6.4 Using intel* MPI 1.6.5 Using MVAPICH2*	
1.6.6 Training on Multiple Nodes with Multiple Workers	
1.6.7 Evaluating the Accuracy of the Trained Model	
1.6.8 Multi-Stream Inference on the Trained Model	
2. Using Singularity*. 2.1 Installing Singularity*.	
2.2 Building Singularity Image	
2.3 Running TensorFlow With Singularity	
3. Using Nfs And Slurm*	
3.1 Using NFS Mounted File System. 3.2 Using Slurm [*] Scheduler.	
4. Tensorflow Build Instructions	
4.1 Building TensorFlow.	
4.2 Install TensorFlow using script	
5. Sample Scripts. 5.1 TensorFlow build script.	
5.2 Slurm scripts	
5.3 Singularity scripts	
5.3.1 Install script	
5.3.2 Recipe file for TensorFlow wheel downloaded from a URL	
5.3.3 Recipe file for TensorFlow wheel on local file system	
5.3.4 Singularity run-script	
6. Troubleshooting	
6.1 TensorFlow Import Issues	31
6.1.1 Importing TensorFlow	
6.1.1 Importing TensorFlow 6.1.2 Run Idd to find the dynamically linked libraries	
6.1.1 Importing TensorFlow 6.1.2 Run Idd to find the dynamically linked libraries 6.1.3 Check by running:	
6.1.1 Importing TensorFlow 6.1.2 Run Idd to find the dynamically linked libraries	32 32 33 34

Convolutional Neural Network with TensorFlow

Getting Intel-optimized TensorFlow is easy.

TensorFlow performance guide is the best source on performance tips.

Intel-optimized TensorFlow improves TensorFlow CPU performance by up to 14X.

Stay tuned for updates - https://ai.intel.com/tensorflow

START INSTANCES

C5.2xlarge

Optimization Notice

Audience Community Effort

- 1) We have N attendees of the workshop
- 2) While Michael is preparing N nodes ...
- 3) Audience task
 - a) Collectively solve the following problem
 - b) Each workshop participant gets a unique index 0 < I <= N
- 4) Write down the IP address related to your index from Michael's sheet

TENSORFLOW HANDS-ON IMAGE CLASSIFICATION Basics

Workshop Setup

\$ cd ~/labs/tf_basics/ \$ 11 total 8 -rw-----. 1 workshop workshop 160 Nov 15 20:49 01_source_environments.sh -rwx-----. 1 workshop workshop 394 Nov 15 20:49 02_start_notebook.sh drwxrwxr-x. 5 workshop workshop 199 Nov 15 22:01 mnist drwxrwxr-x. 2 workshop workshop 30 Nov 15 10:33 test

Start Jupyter Notebook

\$ source ./01_source_environments.sh

\$./02_start_notebook.sh

[I 17:27:37.744 NotebookApp] Serving notebooks from local directory: /home/workshop/labs/tf_basics [I 17:27:37.744 NotebookApp] The Jupyter Notebook is running at: [I 17:27:37.744 NotebookApp] http://127.0.0.1:12346/?token=7e7b503b855e94721b6041daf4abe1e470f5c42f31539957 [I 17:27:37.744 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 17:27:37.744 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time, to login with a token: http://127.0.0.1:12346/?token=7e7b503b855e94721b6041daf4abe1e470f5c42f31539957

Open Jupyter Notebook

C Home	× +		-	3	>
$\leftrightarrow \rightarrow {\tt G}$	127.0.0.1:12346/tree			100	
	💭 Jupyter	Quit	Logout		
	Files Running Clusters				
	Select items to perform actions on them.	Upload	New - 2		
		Name 🕹 Last Modified	File size		
	in mnist	5 hours ago			
	C test	7 hours ago			
	01_source_environments.sh	2 minutes ago	160 B		
	02_start_notebook.sh	5 hours ago	166 B		
	mkl_dnn.log	2 minutes ago	0 B		

	× 🖉 01_mnist_softmax × + – 🗆 ×
С	 ③ 127.0.0.1:12346/notebooks/mnist/01_mnist_softmax.ipynb ☆ # ●
	Cjupyter 01_mnist_softmax (unsaved changes)
	File Edit View Insert Cell Kernel Widgets Help Trusted Python 3 O
	🖺 🕂 🛠 🖄 🖪 🛧 🔸 N Run 🔳 C 🕨 Code 🔻
	<pre>In []: W # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/Licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS 15" BASIS, # WITMOUT WARRANTES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific Language governing permissions and # Limitations under the license. ""A very simple NNIST classifier. See extensive documentation at http://www.tensorflow.org/get_started/mnist/beginners ""Tom _future_ import absolute_import from _future_ import division from _future_ import print_function #import argparse import sys from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None </pre>

Optimization Notice

mnist/01_mnist_softmax.ipynb – 15 Minutes

- 1) What is a Bias?
- 2) How does the matrix multiplication look like in TensorFlow?
- 3) What is the cross entropy?
- 4) What optimizer is being used?
- 5) How can you extract the correct prediction?
- 6) What is the accuracy of the trained model?
- 7) Is the evaluation accuracy using different data?

MNIST Softmax Demo Summary

- The bias represents some activation- independent offset for each neuron
- Cross entropy is used to compute the difference (loss) between vectors
- The accuracy is determined using a different evaluation dataset

mnist/02_mnist_deep.ipynb – 20 Minutes

- 1) How is h_conv2 connected to the topology?
- 2) What is keep_prob representing?
- 3) What optimizer is being used?
- 4) How is the evaluation of the accuracy being done during training?
- 5) Can you compare the performance of different Jupyter kernels?
- 6) Is MKL-DNN used by each kernel?
- 7) What are the MKL-DNN primitives consuming most of the time?

MNIST CNN Demo Summary

- Conv2 is activated by the pooling layer after Conv1
- Keep_prob represents the dropout
- The "vanilla_tf" kernel does not use MKL-DNN, while "idp_tf" does
- The convolutions take the majority of CPU time almost 20 seconds
- Switch off MKLDNN_VERBOSE for maximum performance

🗂 jupyter	02_mnist_deep_solution Last Checkpoint: Last Thursday at 10:19 PM (autosaved)	Logout
File Edit	View Insert Cell Kernel Help Trusted	idp_tf O
	P: • • • • • • • • • • • • • • • • • • •	
In [12]:	Which python	
	/home/workshop/.conda/envs/idp_tf/bin/python	
	<pre>batch = mnist.test.next_batch(10000, shuffle=False) acc = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})</pre>	

TENSORFLOW HANDS-ON IMAGE CLASSIFICATION Distributed

Workshop Setup

- \$ cd ~/labs/tf_distributed
- \$ 11
- total 8
- -rw-----. 1 workshop workshop 146 Nov 20 17:53 01_source_environments.sh
- -rwx-----. 1 workshop workshop 145 Nov 20 16:04 02_start_notebook.sh
- drwxrwxr-x. 5 workshop workshop 152 Nov 21 13:22 images
- drwxrwxr-x. 5 workshop workshop 245 Nov 20 17:59 mnist

Start Jupyter Notebook

\$ source ./01_source_environments.sh

Intel(R) Parallel Studio XE 2019 Update 1 for Linux* Copyright (C) 2009-2018 Intel Corporation. All rights reserved.

\$./02_start_notebook.sh

[I 15:50:49.123 NotebookApp] Serving notebooks from local directory: /home/workshop/labs/tf_distributed [I 15:50:49.123 NotebookApp] 0 active kernels [I 15:50:49.123 NotebookApp] The Jupyter Notebook is running at: [I 15:50:49.123 NotebookApp] http://127.0.0.1:12346/?token=041bb0345290e3354f45f8d7474341044e3ace3862764551 [I 15:50:49.123 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 15:50:49.124 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time, to login with a token:

http://127.0.0.1:12346/?token=041bb0345290e3354f45f8d7474341044e3ace3862764551

mnist/03_mnist_deep_monitored.ipynb – 15 Min

- 1) What is the global step?
- 2) How does the MonitoredTrainingSession help you?
- 3) What happens if the training gets disrupted and continued later on?
- 4) How can a checkpoint be re-opened?
- 5) How can a checkpoint be re-stored?

MNIST CNN Monitored Training Session Demo Summary

- The global step helps when check pointing and restarting the training
- The MonitoredTrainingSession
 - Does automatic checkpoints
 - Re-opens checkpoints automatically
 - Does automatic logging
 - Allows distributed runs

	× 🧧 03_mnist_deep_monitored_soluti × +			- 🗆	
$\ \ \leftarrow \ \ \rightarrow \ \ G$	127.0.0.1:12346/notebooks/mnist/03_mnist_deep_monitored_solution.ipynb				
	Jupyter 03_mnist_deep_monitored_solution Last Checkpoint: a day ago (unsaved changes)	ę	Logout		
	File Edit View Insert Cell Kernel Help	Trusted	idp_tf O		
	B + S 2 K ↑ V NRun C Code v E Invoicensurriuming local init up.				
	<pre>INFO:tensorFlow:Bore running local_Init_op. INFO:tensorFlow:Savdrg checkpoints for 0 into graphs/monitored/model.ckpt. INFO:tensorFlow:accuracy = 0.16, loss = 0.464192, step = 1 INFO:tensorFlow:global_step/sec: 24.3144 INFO:tensorFlow:global_step/sec: 24.3144 INFO:tensorFlow:accuracy = 0.78, loss = 0.466192, step = 201 (3.722 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.3806429, step = 201 (3.722 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.43768922, step = 201 (3.720 sec) INFO:tensorFlow:accuracy = 0.8, loss = 0.44768922, step = 301 (3.730 sec) INFO:tensorFlow:accuracy = 0.8, loss = 0.44768922, step = 301 (3.730 sec) INFO:tensorFlow:accuracy = 0.8, loss = 0.43768922, step = 501 (3.730 sec) INFO:tensorFlow:accuracy = 0.8, loss = 0.4806432, step = 601 (3.765 sec) INFO:tensorFlow:global_step/sec: 26.3991 INFO:tensorFlow:global_step/sec: 26.3991 INFO:tensorFlow:global_step/sec: 26.2991 INFO:tensorFlow:global_step/sec: 26.2991 INFO:tensorFlow:global_step/sec: 26.2991 INFO:tensorFlow:global_step/sec: 26.2991 INFO:tensorFlow:global_step/sec: 26.797 INFO:tensorFlow:global_step/sec: 26.797 INFO:tensorFlow:global_step/sec: 26.797 INFO:tensorFlow:global_step/sec: 26.797 INFO:tensorFlow:global_step/sec: 26.797 INFO:tensorFlow:global_step/sec: 26.797 INFO:tensorFlow:global_step/sec: 26.797 INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.714 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tensorFlow:accuracy = 0.9, loss = 0.2718992, step = 001 (3.774 sec) INFO:tenso</pre>				
	<pre>batch = mnist.test.next_batch(1000) tf_save= tf.train.save() tf_save=.tf.train.save() tf_save=.restore(sess, tf.train.latest_checkpoint(checkpoint_dir)) acc = sess.run(accuracy %ed_ditct_(x: batch[0], y_: batch[1], keep_prob: 1.0}) print('test accuracy %g' % (acc))</pre>				h
	INFO:tensorflow:Restoring parameters from graphs/monitored/model.ckpt-1000 test accuracy 0.9638				

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

mnist/04_mnist_deep_horovod.ipynb – 20 Min

- 1) How to initialize Horovod and why is it necessary?
- 2) Why is it necessary to adept the learning rate with larger batches?
- 3) How can you dynamically adept the learning rate?
- 4) How to identify rank #1 (0)?
- 5) Why is it necessary to adept the number of training steps according to the number of workers / larger batches?
- 6) How can you dynamically adept the number of training steps?
- 7) How is the single process performance vs 2 ranks vs 4 ranks?

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

MNIST CNN Horovod Demo Summary

- Horovod initializes the MPI communication underneath and therefore defines rank() and size()
- In order to reduce the Time To Train with multiple workers, therefore increasing the batch size, the learning rate needs to scale
- Same for the # of steps for training
- 4 ranks can be faster since less threading efficiency is required in small convolutions

images/05_custom_images.ipynb – 20 Min

- 1) What additional configuration variables are defined?
- 2) Why does read_images initialize the random seed with 42?
- 3) How does the next_batch_index function work?
- 4) What changes are needed for the original MNIST CNN topology?
- 5) How is the data being split into training and evaluation?
- 6) Why is the initial accuracy during training always around 0.2?
- 7) How can you extract the misclassified images?
- 8) How is the single process performance vs 2 ranks vs 4 ranks?

MNIST CNN Horovod Demo Summary

- Configuration variables like image size, batch size, training / eval split
- The training batches are partitioned in a way that each worker gets a different sub-batch – this requires aligned data. Also when re-starting a checkpoint, the train / eval split would be messed up otherwise
- Approx. init. accuracy = 1 / #classes
- Identify misclassified by leveraging the prediction_class

It is recommended to restart the Jupyter kernel and continue with the lines below in order to free system memory

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

TENSORFLOW HANDS-ON CNN BENCHMARKING Distributed

Workshop Setup

- \$ cd ~/labs/tf_benchmark
- \$ 11
- total 12

-rw-----. 1 workshop workshop 111 Nov 21 12:29 01_source_environments.sh -rwxrwxr-x. 1 workshop workshop 510 Nov 21 13:16 02_run_half_node.sh

-rwxrwxr-x. 1 workshop workshop 510 Nov 21 13:16 03_run_full_node.sh

drwxrwxr-x. 4 workshop workshop 65 Nov 21 12:08 benchmarks

Benchmark CNN – ResNet50 Example – 15 Min

\$ source ./01_source_environments.sh

Intel(R) Parallel Studio XE 2019 Update 1 for Linux* Copyright (C) 2009-2018 Intel Corporation. All rights reserved.

- \$./02_run_half_node.sh
- ••••
- \$./03_run_full_node.sh

Play with these scripts and parameters – mind the limited memory

- 1) What is the KMP_BLOCKTIME?
- 2) What is NCHW?
- 3) How much difference does -mkl=True make?
- 4) How much difference does the pinning make (KMP_AFFINITY)?
- 5) Can you find a better Intra- Threads vs Inter- Threads combination?
- 6) What effect does the batch size have?

Save your accomplishments

\$./04_pack_work.sh

" \$ 11 ~/Downloads/ total 20 -rw-rw-r--. 1 workshop workshop 18262 Nov 21 17:25 tf_labs.tar.bz2

From your system:

scp -r workshop@\${IP}:~/Downloads/* .

TERMINATE INSTANCES

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

SUMMARY | Q&A

