ETH zürich

Bioinformatics pipeline for revealing tumour heterogeneity

Mustafa Anıl Tuncel

anilbey
 /in/aniltuncel
 anilbey

Mustafa Anıl Tuncel Software Engineer @ ETH Zürich

Research interests

- Data analysis workflows
- Bioinformatics
- Machine learning
- Recommender systems

Outline

Background

- Biology prior
- Single cell sequencing technologies
- Mutations on DNA
- DNA mutation trees
 - Tree model
 - MCMC moves
- Pipeline
 - Snakemake
 - HDF5

What is a cell?

Figure 1. Representation of cell, tissue, organ, system and organism. Retrieved from https://www.colscol.com/body-system/

DNA from single cells

Figure 2. DNA structure. Retrieved from https://www.interleucina.org/

Structural mutations on DNA

- Copy number variations
 - Deletion
 - Duplication
- Mutations from DNA of single cells
- Heterogeneous
- Have ancestors, children, siblings

Trees to represent structural mutations

Learning the tree

- Dirichlet-multinomial model with overdispersion
- We target maximising the tree posterior with an MCMC scheme
 - Prune-reattach
 - Label swap
 - Add/remove events
 - Add/remove node
 - Condense/split node
 - Genotype preserving prune-reattach

Prune-reattach

Add / remove node

Condense / split node

Tree learned from mouse data

Inferred tree (a) and copy number profiles (b) for the first 20 regions (3047 bins) of the real sequencing data For comparison the normalised counts per bin are drawn in (c).

What else is required?

- Reproducibility in research
- Scalability
- Support for Multiple programming languages
- Multi processing
- Cluster execution
- Resources management
- Statistics about resource usages

Workflow management system

Python + GNU Makefile = Snakemake

Snakemake

- A Pythonic workflow management system
- Extends the Python syntax
- Follows the GNU make paradigm
 - Workflows are defined in terms of rules that define how to create output files from input files
 - Dependencies between the rules are determined automatically
- Benefits from Python libraries
- Automated logging of the status
- Suspend/resume workflow
- A general-purpose workflow management system for any discipline

pip install snakemake

Example: read mapping

```
rule bwa_map:
input:
    "data/genome.fa",
    "data/samples/A.fastq"
    output:
    "mapped_reads/A.bam"
    shell:
    "bwa mem {input} | samtools view -Sb - > {output}"
```

Example: read mapping (generalised)

```
rule bwa_map:
input:
    "data/genome.fa",
    "data/samples/{sample}.fastq"
    output:
    "mapped_reads/{sample}.bam"
    shell:
    "bwa mem {input} | samtools view -Sb - > {output}"
```

DAG of jobs

Snakefile

import glob

```
import os
 2
      from pathlib import Path
 3
      from secondary analysis import SecondaryAnalysis
 4
 5
 6
      fastqs_path = config['fastqs_path']
      analysis_path = config['analysis_path']
 7
 8
      def rename_fastq(s_name):
9
          split_name = s_name.split('_')
10
          new_name = '_'.join(split_name[6:7]+split_name[-4:])
11
12
          return new_name
13
14
      rule rename_fastqs:
15
          input:
16
              rules.merge_files.output.done
17
          output:
              "rename fastqs done.txt"
18
19
          run:
20
              merged_fastqs_path = fastqs_path + "/merged/"
21
              print(merged_fastqs_path)
              fastqs_dir = merged_fastqs_path
22
              for filename in os.listdir(fastqs_dir):
23
24
                  if filename.startswith("MERGED_BSSE") and filename.endswith('.gz'):
                      print("old name: " + filename)
25
26
                      print("new name: " + rename_fastq(filename))
27
                      os.rename(fastqs_dir+filename, fastqs_dir+rename_fastq(filename))
              Path('rename_fastqs_done.txt').touch()
```

Config file

Cluster execution

bsub -J snake_job_name -W 23:59 -R "rusage[mem=16000]" "snakemake -s self_benchmark_snakefile.py --stats ./simulations.stats --cluster 'bsub -M {params.mem} -n {threads} -W {params.time} -R "rusage[mem={params.mem},scratch={params.scratch}]"' -j 24 -p -k --latency-wait 300"

- Configurable for LSF/BSUB scheduler
- Allows scaling without changing the workflow

HDF5

- Hierarchical data format v5
- Binary files
- Easy to manage multiple datasets
- Keeps metadata with data
- Fast I/O operations & storage space optimization (compressed binary files)
- Platform/language independent
- Self describing
- No need to load whole data

HDF = Hierarchical Data Format

HDF5 wrappers in Python

h5py is a thin, pythonic wrapper around the $\underline{HDF5}$

pip install h5py

Outline

- Background
 - Biology prior
 - Single cell sequencing technologies
 - Mutations on DNA
- DNA mutation trees
 - Tree model
 - MCMC moves
- Pipeline
 - Snakemake
 - HDF5

Future work

- Publish the method
 - Compare to clustering methods
 - Evaluate on simulated data
 - Show results on real data
- Wrap up the workflow as a Python package
 - Do the C++ bindings
 - Open source it

Thank you!

Mustafa Anıl Tuncel Software Engineer

ETH Zurich

anilbey
 in /in/aniltuncel
 anilbey
 mtuncel@ethz.ch