
How How ThinkingThinking in in
Python Made Me a BetterPython Made Me a Better

So�ware EngineerSo�ware Engineer
EuroPython 2019

Johnny Dude

bit.ly/ThinkPy

http://bit.ly/ThinkPy

Hi, I'm Johnny DudeHi, I'm Johnny Dude
So�ware Engineer at

Using Python at work since 2005

I use Python for prototyping

Responsible for c++ production code

This is my first EuroPython talk

TogaNetworks

bit.ly/ThinkPy

http://bit.ly/ThinkPy

OutlineOutline
1. Psychological concepts
2. Relation to the development process
3. Experiment

Psychological ConceptsPsychological Concepts

Trying not to think about
something, makes thinking

about it more likely
* Ironic Process Theory

https://en.wikipedia.org/wiki/Ironic_process_theory

The number of objects an
average human can hold in

working memory is 7 ± 2
* The Magical Number Seven, Plus or Minus Two

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Anything that occupies
your working memory reduces

your ability to think
* Thinking Fast and Slow

https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman-ebook/dp/B00555X8OA

Capital of France

Priming is a technique whereby exposure

to one stimulus influences a response
to a subsequent stimulus, without

conscious guidance or intention
* Thinking Fast and Slow
* The Priming Effect

https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman-ebook/dp/B00555X8OA
https://en.wikipedia.org/wiki/Priming_(psychology)

You cannot prevent it

Task switching reduces
your productivity time

* Executive Control of Cognitive Processes in Task Switching

https://www.apa.org/pubs/journals/releases/xhp274763.pdf

Fluency is the ability
to do an activity with little, or

no conscious effort

Relation to theRelation to the
Development ProcessDevelopment Process

Immediate FeedbackImmediate Feedback

 def get_biggest_files(n, path='.'):

 lines = system(f'du -a {path}').splitlines()

 pairs = [line.split('\t') for line in lines]

 return [name for size, name in nlargest(n, pairs)]

 >>> n, path = 2, 'small folder'

 >>> lines = system(f'du -a {path}').splitlines()

 >>> lines[:2]

 ['8\t./darker.css', '32\t./index.html']

 >>> n, path = 2, 'small folder'

 >>> lines = system(f'du -a {path}').splitlines()

 >>> lines[:2]

 ['8\t./darker.css', '32\t./index.html']

 >>> pairs = [line.split('\t') for line in lines]

 >>> pairs[:2]

 [['8', './darker.css'], ['32', './index.html']]

 >>> n, path = 2, 'small folder'

 >>> lines = system(f'du -a {path}').splitlines()

 >>> lines[:2]

 ['8\t./darker.css', '32\t./index.html']

 >>> pairs = [line.split('\t') for line in lines]

 >>> pairs[:2]

 [['8', './darker.css'], ['32', './index.html']]

 >>> nlargest(n, pairs)

 [['96', './.git/objects/d1/31af6800b725b05b...'],

 ['912', './images/repr.jpg'],

 ['900', './.git/objects/20']]

Learn faster

Catching bugs earlier
reduces task switching

Confidence that your code works,

Confidence that your code works,
without concious effort

Standard RepresentationStandard Representation

[

 { "name": "Tyler Durden",

 "age": 35,

 "sibling":[]},

 { "name": "Brad Pitt",

 "age": 56,

 "sibling":["Doug", "Julie"]},

 { "name": "Mia Wallace",

 "age": 25,

 "sibling":[]},

 { "name": "Uma Thurman",

 "age": 49,

 "sibling":["Dechen", "Taya", "Ganden", "Mipam"]},

]

A list of strings, optimized for
filtering items matching a regular expression

A list of strings, optimized for
filtering items matching a regular expression

"Tyler Durden\nBrad Pitt\nMia Wallace\nUma Thurman\n"

A list of strings, optimized for
filtering items matching a regular expression

"Tyler Durden\nBrad Pitt\nMia Wallace\nUma Thurman\n"

["Tyler Durden", "Brad Pitt", "Mia Wallace", "Uma Thurman"]

A dictionary with keys that
can be searched by regular expression.

"Brad Pitt\nMia Wallace\nTyler Durden\nUma Thurman\n"

{ 22: "Dead",

 35: "Alive",

 0: "Alive",

 10: "Alive" }

A dictionary with keys that
can be searched by regular expression.

"Brad Pitt\nMia Wallace\nTyler Durden\nUma Thurman\n"

{ 22: "Dead",

 35: "Alive",

 0: "Alive",

 10: "Alive" }

{ "Tyler Durden": "Dead",

 "Uma Thurman": "Alive",

 "Brad Pitt": "Alive",

 "Mia Wallace": "Alive" }

 (gdb) p my_dict

 $1 = {

 keys = "Brad Pitt\nMia Wallace\nTyler Durden\nUma T

 hurman\n",

 hash_table = std::unordered_map with 4 elements = {

 [10] = PersonState::alive,

 [0] = PersonState::alive,

 [35] = PersonState::alive,

 [22] = PersonState::dead}}

{ "Tyler Durden":

 <PersonState object at 0x7fd2622fbd60>,

 "Uma Thurman":

 <PersonState object at 0x7fd2622fbc40>,

 "Brad Pitt":

 <PersonState object at 0x7fd26231a160>,

 "Mia Wallace":

 <PersonState object at 0x7fd26231a100> }

{ "Tyler Durden":

 <PersonState object at 0x7fd2622fbd60>,

 "Uma Thurman":

 <PersonState object at 0x7fd2622fbc40>,

 "Brad Pitt":

 <PersonState object at 0x7fd26231a160>,

 "Mia Wallace":

 <PersonState object at 0x7fd26231a100> }

{ "Tyler Durden": PersonState(0),

 "Uma Thurman": PersonState(1),

 "Brad Pitt": PersonState(1),

 "Mia Wallace": PersonState(1) }

If you can read it
then you can visualize it, think about it,

and discuss it with other developers

Standard APIStandard API

Counter({

 "Walking Dead": 19,

 "Alive": 7,

 "Dead": 2,

 "Not Born": 1,

})

{ }{ }

I want to store something in a dictionary...

I want to store something in a std::map...

ComposabilityComposability

 def f(nums):

 return [str(n) for n in sorted(nums) if valid(n)]

 def f(nums):

 return [str(n) for n in sorted(nums) if valid(n)]

 def f(nums):

 xs = list(nums)

 sort(xs)

 ys = filter(valid, xs)

 zs = map(str, ys)

 return zs

 Mix the ingredients in a bowl.

 Pour the bowl’s contents into a mould.

 Bake the mould along with its content.

 Mix the ingredients in a bowl.

 Pour the bowl’s contents into a mould.

 Bake the mould along with its content.

 Bake the mixed ingredients.

 def f(nums):

 return [str(n) for n in sorted(nums) if valid(n)]

 def f(nums):

 xs = list(nums)

 sort(xs)

 ys = filter(valid, xs)

 zs = map(str, ys)

 return zs

 vector<string> f(const vector<int>& nums) {

 vector<int> xs = nums;

 sort(xs.begin(), xs.end());

 vector<int> ys;

 copy_if(

 xs.begin(),

 xs.end(),

 back_inserter(ys),

 valid

);

 vector<string> zs;

 transform(

 ys.begin(),

 ys.end(),

 back_inserter(zs),

 [](int n){ return to_string(n); }

);

 return zs;

 }

It is easy to think
with composable tools

Simple is better than ComplicatedSimple is better than Complicated

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer

void f(Object&& obj) // pass by rvalue

void f(shared_ptr<Object> obj) // pass by shared pointer

void f(unique_ptr<Object> obj) // pass by unique pointer

Simple is better than complexSimple is better than complex

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer

void f(Object&& obj) // pass by rvalue

void f(shared_ptr<Object> obj) // pass by shared pointer

void f(unique_ptr<Object> obj) // pass by unique pointer

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer

void f(Object&& obj) // pass by rvalue

void f(shared_ptr<Object> obj) // pass by shared pointer

void f(unique_ptr<Object> obj) // pass by unique pointer

void f(shared_ptr<Object> or unique_ptr<Object> obj) // ??

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer

void f(Object&& obj) // pass by rvalue

void f(shared_ptr<Object> obj) // pass by shared pointer

void f(unique_ptr<Object> obj) // pass by unique pointer

void f(shared_ptr<Object> or unique_ptr<Object> obj) // ??

void f(const Object* obj) // object is immutable

void f(Object* const obj) // pointer is immutable

void f(const Object* const obj) // both are immutable

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer

void f(Object&& obj) // pass by rvalue

void f(shared_ptr<Object> obj) // pass by shared pointer

void f(unique_ptr<Object> obj) // pass by unique pointer

void f(shared_ptr<Object> or unique_ptr<Object> obj) // ??

void f(const Object* obj) // object is immutable

void f(Object* const obj) // pointer is immutable

void f(const Object* const obj) // both are immutable

void f(Object const* obj) // what is immutable?

Complex is better than complicatedComplex is better than complicated

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer

void f(Object&& obj) // pass by rvalue

void f(shared_ptr<Object> obj) // pass by shared pointer

void f(unique_ptr<Object> obj) // pass by unique pointer

void f(shared_ptr<Object> or unique_ptr<Object> obj) // ??

void f(const Object* obj) // object is immutable

void f(Object* const obj) // pointer is immutable

void f(const Object* const obj) // both are immutable

void f(Object const* obj) // what is immutable?

void f(shared_ptr<Object>& obj) // pass shared pointer

 // by reference

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer

void f(Object&& obj) // pass by rvalue

void f(shared_ptr<Object> obj) // pass by shared pointer

void f(unique_ptr<Object> obj) // pass by unique pointer

void f(shared_ptr<Object> or unique_ptr<Object> obj) // ??

void f(const Object* obj) // object is immutable

void f(Object* const obj) // pointer is immutable

void f(const Object* const obj) // both are immutable

void f(Object const* obj) // what is immutable?

We can use shared pointers everywhere
But, we cannot stop thinking about...

Type HintsType Hints

Do we realy want to

define types and structures before
understanding the problem

and the solution?

Constantly task switching between:
Coding and Type-defining

How many bits would
I like this integer to have?

What happens when you are wrong?

Lets just use int,
and deal with it later.

PrototypingPrototyping

Prototype is a model
built to test a concept,
and to be learned from

You write it once,
gaining experience in both

understanding the problem, and
understanding a solution

You write it again,
with less things to worry about

and attention to finer details

Improved Readability
Improved Maintainability

Fewer Bugs

CodingPrototyping

Coding

CodingPrototyping

Coding Future Tasks

Future Tasks

Some things you can do
only in Python

Use a dictionary
Define a function

Think in the language you write

Handle type checking, seperately

Along with many other reasons.

c++ Coding

c++ CodingPython
Prototyping

Future Tasks

Future Tasks

An empirical comparison of c, c++, java, perl, python, ...

https://page.mi.fu-berlin.de/prechelt/Biblio/jccpprtTR.pdf

How much of the speedup do we get
from thinking faster?

My ExperimentMy Experiment

 +--+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+--+

 |S | |Sooooooooooooooooooo |

 + +--+--+--+--+ + +--+ + + +--+--+--+--+ + o+--+ +

 | | | | | | | | | | ooo | |

 +--+ + + + +--+--+ + + +--+ + + + +--+--+o + +

 | | | | | | | | | | oooooo | |

 + +--+ +--+--+ +--+--+ + + +--+ +--+--+ o+--+--+ +

 | | | | | | | | | oooo| |

 +--+ +--+--+ +--+ + +--+ +--+ +--+--+ o+--+ +--+--+

 | | | | | | ooo | |

 + +--+ +--+--+ +--+--+ + + +--+ +--+--+o +--+--+ +

 | |E | | |E |

 +--+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+--+

Python

c++

Python

c++

Python

#1

#2

#3

#4

#5

Python

c++

Python

c++

Python

#1

#2

#3

#4

#5

22

42

14

30

151

Work Time in Minutes

Python

c++

Python

c++

Python

#1

#2

#3

#4

#5

22

42

14

30

151

64

50

54

74

108

Work Time in Minutes Source Lines of Code
Excluding: comment, empty lines, bracelets

c++

Python
#4

#5
14

30

64

50

Work Time in Minutes Source Lines of Code
Excluding: comment, empty lines, bracelets

Algorithm
Data Types
Funtions
Names

14

30

64

50

Work Time in Minutes Source Lines of Code
Excluding: comment, empty lines, bracelets

Both version have exactly the same

Algorithm
Data Types
Funtions
Names

14

30

64

50

Work Time in Minutes Source Lines of Code
Excluding: comment, empty lines, bracelets

Both version have exactly the same

28 excluding extra time for typing

set<Point> calc_path(map<Point, Point> prevs, Point point) {

 set<Point> results;

 point = prevs[point];

 while (prevs.find(point) != prevs.end()) {

 results.insert(point);

 point = prevs[point]; }

 return results; }

auto points = calc_path(prevs, end_point);

def calc_path(prevs, point):

 point = prevs[point]

 while point in prevs:

 yield point

 point = prevs[point]

points = set(calc_path(prevs, end_point))

Why?Why?

What was I Thinking About?

Experiment,Experiment,
it's funit's fun

Python

c++

Python

c++

Python

#1

#2

#3

#4

#5

22

42

14

30

151

64

50

54

74

108

Work Time in Minutes Source Lines of Code
Excluding: comment, empty lines, bracelets

SummarySummary

Immediate Feedback
Standard Representation & API

Composability
Prototype in Python

SummarySummary

Standard Representation & API
Composability

Prototype in Python

Immediate Feedback

SummarySummary

Composability
Prototype in Python

Immediate Feedback
Standard Representation & API

SummarySummary

Prototype in Python

Immediate Feedback
Standard Representation & API

Composability

SummarySummary

Immediate Feedback
Standard Representation & API

Composability
Prototype in Python

Think about the way you think
Think in Python

Experiment, it's fun!

Think in Python
Experiment, it's fun!

Think about the way you think

Experiment, it's fun!

Think about the way you think

Think in Python

Think about the way you think

Think in Python

Experiment, it's fun!

Think in Python

Thank YouThank You
Twitter: @DudeJohnny1219
email: johnny.dude@gmail.com

bit.ly/ThinkPy

http://bit.ly/ThinkPy

Many thanks to those who made this talk possible,Many thanks to those who made this talk possible,
without thier help this talk might not be worth listening to.without thier help this talk might not be worth listening to.

Nobuko Sano (佐野信⼦), Elizabeth Firman,
Michael Hirsch, Aharon Broduch, Eran Galon, Kobi and Suzi Lidershnider,

Boris Liberman, Ariel Weinstein, Omer Anson, Eran Galon, Aviv Kuvent, Eddy
Duer, Meital Bar-Kana, Yaron Mor

References and InspirationsReferences and Inspirations

Bret Victor gave an amazing talk ("Inventing on Principle") in which he mentioned immidiate reaction.

I first learned about the magical number 7 from the famous post of Glyph about threading module complexities.

Alan Kay have many talks explaining science, human, machines, learning, teaching, and combining it all together.

I actually started reading "Thinking fast and slow" of Daniel Kahneman last month and decided to take a couple ofcouple of very good points from the first half
of this book.

One of the papers about task switching I happend to find. It talks about many interesting experiments on task switiching

Rubinstein, J. S., Meyer, D. E. & Evans, J. E. (2001). Executive Control of Cognitive Processes in Task Switching. Journal of Experimental Psychology: Human
Perception and Performance, 27, 763-797.

The empirical research I like, it shows a lot of measurements comparing programing languages, it is old, but I believe nothing major changed since then. There
are other reseach that shows similar results in different domains, and with different methods. (like analyzing github repositories.)

Prechelt, Lutz. (2000). An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a search/string-processing program.

https://vimeo.com/36579366

https://glyph.twistedmatrix.com/2014/02/unyielding.html

https://www.apa.org/pubs/journals/releases/xhp274763.pdf

https://page.mi.fu-berlin.de/prechelt/Biblio/jccpprtTR.pdf

https://vimeo.com/36579366
https://glyph.twistedmatrix.com/2014/02/unyielding.html
https://www.apa.org/pubs/journals/releases/xhp274763.pdf
https://page.mi.fu-berlin.de/prechelt/Biblio/jccpprtTR.pdf

