How Thinking In
Python Made Me a Better
Software Engineer

EuroPython 2019
Johnny Dude

bit.ly/ThinkPy

http://bit.ly/ThinkPy

Hi, I'm Johnny Dude

Software Engineer at TogaNetworks
Using Python at work since 2005
| use Python for prototyping

Responsible for c++ production code

This is my first EuroPython talk

bit.ly/ThinkPy

http://bit.ly/ThinkPy

Outline

1. Psychological concepts
2. Relation to the development process
3. Experiment

A . I.r..

Psychological Concepts

Trying not to think about
something, makes thinking
about it more likely

*Ironic Process Theory

https://en.wikipedia.org/wiki/Ironic_process_theory

72
The number of objects an

average human can hold in
working memory is 7 + 2

*The Magical Number Seven, Plus or Minus Two

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

7x2
Anything that occupies

your working memory reduces
your ability to think

*Thinking Fast and Slow

https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman-ebook/dp/B00555X8OA

Capital of France

A

Priming is a technique whereby exposure
to one stimulus influences a response
to a subsequent stimulus, without

conscious guidance or intention

*Thinking Fast and Slow
*The Priming Effect

https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman-ebook/dp/B00555X8OA
https://en.wikipedia.org/wiki/Priming_(psychology)

A

You cannot prevent it

Lf‘-‘ -
% E

Task switching reduces
your productivity time

* Executive Control of Cognitive Processes in Task Switching

https://www.apa.org/pubs/journals/releases/xhp274763.pdf

Fluency is the ality
to do an activity with little, or
no conscious effort

Relation to the
Development Process

Immediate Feedback

exampe.py - /imp/fexampe. py (3.8.0a2+)

File Edit Format Run Options Window Help

File Edit Shell Debug Options Window Help

Python 3.8.0a2+ (heads/master:d2fddifedf, Mar 16 2019, 06:03:27)
from system import system

[GCC 8.2.0] on linux
Type "help", "copyright”, "credits" or "license()" for more information. from heapg import nlargest

RESTART: /tmp/exampe.py (n, path):
lines = system('du -a |

(cmd)

Ln: 6 Col: 26

def get biggest files(n, path='."):
lines = system(f'du -a {path}"').splitlines()
palirs = [line.split('\t') for line 1n lines]
return [name for size, name 1in nlargest(n, pairs)]

>>> n, path = 2, 'small folder’

>>> lines = system(f'du -a {path}').splitlines()
>>> lines|[:2]

['8\t./darker.css', '32\t./index.html']

>>> n, path = 2, 'small folder’

>>> lines = system(f'du -a {path}').splitlines()
>>> lines[:2]

['8\t./darker.css', '32\t./index.html']

>>> palrs = [line.split('\t') for line 1in lines]
>>> palrs|:2]

[['8', './darker.css'], ['32', './index.html']]

>>> n, path = 2, 'small folder’

>>> lines = system(f'du -a {path}').splitlines()
>>> lines|[:2]

['8\t./darker.css', '32\t./index.html"]

>>> palrs = [line.split('\t') for line 1in lines]
>>> palrs|:2]

[['8", "./darker.css'], ['32", './index.html']]

>>> nlargest(n, pairs)

[['96', './.git/objects/d1/31af6800b725b05b..."],
['912', './images/repr.jpg'l,

['900', './.git/objects/20']]

| earn faster

Lf‘-‘ -
% E

Catching bugs earlier
reduces task switching

Confidence that your code works,

7 £2

Confidence that your code works,
without concious effort

Why are we still using a programming language from
the bloody 1970's anyway?

Debugging Segtaults

For

Masochists

O!REILLY® Dante Alighieri and his Anger

Management Counsellor

Standard Representation

"name": "Tyler Durden",
"age": 35,
"sibling":[1},

"name": "Brad Pitt",
"age": 50,

"sibling":["Doug", "Julie"]},

"name": "Mia Wallace",
"age": 25,
"sibling":[1},

"name": "Uma Thurman",
"age": 49,

"sibling":["Dechen", "Taya",

"Ganden",

"Mipam"]},

A list of strings, optimized for
filtering items matching a regular expression

A list of strings, optimized for

filtering items matching a regular expression
"Tyler Durden\nBrad Pitt\nMia Wallace\nUma Thurman\n"

A list of strings, optimized for

filtering items matching a regular expression

"Tyler Durden\nBrad Pitt\nMia Wallace\nUma Thurman\n"
["Tyler Durden", "Brad Pitt", "Mia Wallace", "Uma Thurman"]

A dictionary with keys that

can be searched by regular expression.
"Brad Pitt\nMia Wallace\nTyler Durden\nUma Thurman\n”

{ 22: "Dead",
35: "Alive",
O: "Alive",

10: "Alive" }

A dictionary with keys that

can be searched by regular expression.

"Brad Pitt\nMia Wallace\nTyler Durden\nUma Thurman\n”
{ 22: "Dead",

35: "Alive",
O: "Alive",
10: "Alive" }

{ "Tyler Durden": "Dead",
"Una Thurman": "Alive",
"Brad P1tt": "Alive",
"Mia Wallace": "Alive" }

7 £2

(gdb) p my dict
$1 = {
keys = "Brad Pitt\nMia Wallace\nTyler Durden\nUma T
hurman\n",
hash table = std::unordered map with 4 elements = {
[10] = PersonState::alive,
[0] = PersonState::alive,
[35] PersonState::alive,
[22] PersonState: :dead}}

"Tyler Durden":

<PersonState object at Ox/71d2622fbd60>,
"Una Thurman":

<PersonState object at Ox/71d2622ftbc40>,
"Brad P1itt":

<PersonState object at 0x71d26231al160>,
"M1a Wallace":

<PersonState object at 0x71d26231al00> }

"Tyler Durden":

<PersonState object at Ox/71d2622fbd60>,
"Una Thurman":

<PersonState object at Ox/71d2622ftbc40>,
"Brad Pitt":

<PersonState object at 0x71d26231al160>,
"M1a Wallace":

<PersonState object at 0x71d26231al00> }

"Tyler Durden": PersonState(0),
"Uma Thurman": PersonState(1l),
"Brad P1itt": PersonState(1l),
"Mia Wallace": PersonState(1l) }

If you can read it
then you can visualize it, think about it,
and discuss it with other developers

Standard API

Counter({
"Walking Dead": 19,
"Alive": 7/,
"Dead": 2,
"Not Born": 1,
})

11

| want to store something in a dictionary...

A

| want to store something in a std::map...

Composability

def f(nums):
return [str(n) for n i1n sorted(nums) 1f valid(n)]

def f(nums):
return [str(n) for n i1n sorted(nums) 1f valid(n)]

def f(nums):
Xs = list(nums)
sort(xs)
ys = filter(valid, xs)
zs = map(str, ys)
return zs

Mix the i1ngredients i1n a bowl.
Pour the bowl’s contents into a mould.
Bake the mould along with 1ts content.

Mix the 1ngredients 1in a bowl.
Pour the bowl’s contents into a mould.
Bake the mould along with 1ts content.

Bake the mixed ingredients.

def f(nums):
return [str(n) for n i1n sorted(nums) 1f valid(n)]

def f(nums):
Xs = list(nums)
sort(xs)
ys = filter(valid, xs)
zs = map(str, ys)
return zs

vector<string> f(const vector<int>& nums) {
vector<int> Xs = nums;
sort(xs.begin(), xs.end());

vector<int> ys;

copy if(
Xs.begin(),
xs.end(),
back inserter(ys),
valid

) ;

vector<string> zs;
transform(
ys.begin(),
ys.end(),
back inserter(zs),
[](int n){ return to string(n); }

) ;

return zs;

It is easy to think
with composable tools

Simple is better than Complicated

vold
vold
vold
vold
vold
vold

f(Object obj)

f(Object& objy)
f(Object* obj)
f(Object&& oby)

// pass
// pass
// pass
// pass

f(shared ptr<Object> obj) // pass
f(unique ptr<Object> obj) // pass

value
reference

raw pointer
rvalue

shared pointer
unique pointer

Simple is better than complex

vold
vold
vold
vold
vold
vold

T
T
T (

T (
T (
T (

Object obj) // pass
Object& obj) // pass
Object* obj) // pass
Object&& obj) // pass

shared ptr<Object> obj) // pass
unique ptr<Object> obj) // pass

value
reference

raw pointer
rvalue

shared pointer
unique pointer

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer
void f(Object&& obj) // pass by rvalue

void f(shared ptr<Object> obj) // pass by shared pointer

void f(unique ptr<Object> obj) // pass by unique pointer

vold f(shared ptr<Object> or unique ptr<Object> obj) // 77

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer
void f(Object&& obj) // pass by rvalue

void f(shared ptr<Object> obj) // pass by shared pointer

void f(unique ptr<Object> obj) // pass by unique pointer

void f(shared ptr<Object> or unique ptr<Object> obj) // ??

void f(const Object* obj) // object is immutable
void f(Object* const obj) // pointer is immutable
void f(const Object* const obj) // both are immutable

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer
void f(Object&& obj) // pass by rvalue

void f(shared ptr<Object> obj) // pass by shared pointer

void f(unique ptr<Object> obj) // pass by unique pointer

void f(shared ptr<Object> or unique ptr<Object> obj) // ??

void f(const Object* obj) // object is immutable
void f(Object* const obj) // pointer is immutable
void f(const Object* const obj) // both are immutable

void f(Object const* obj) // what 1s immutable?

Complex is better than complicated

vold
vold
vold
vold
vold
vold

vold

vold
vold
vold

vold

f(Object obj)

f(Object& objy)
f(Object* obj)
f(Object&& obj)

// pass
// pass
// pass
// pass

f(shared ptr<Object> obj) // pass
f(unique ptr<Object> obj) // pass

value
reference

raw pointer
rvalue

shared pointer
unique pointer

f(shared ptr<Object> or unique ptr<Object> obj) // ?7

f(const Object*
f(Object* const
f(const Object*

f(Object const*

obj) // object is immutable
obj) // pointer is immutable
const obj) // both are immutable

obj) // what 1s immutable?

void f(shared ptr<Object>& obj) // pass shared pointer
// by reference

void f(Object obj) // pass by value

void f(Object& obj) // pass by reference

void f(Object* obj) // pass by raw pointer
void f(Object&& obj) // pass by rvalue

void f(shared ptr<Object> obj) // pass by shared pointer

void f(unique ptr<Object> obj) // pass by unique pointer

void f(shared ptr<Object> or unique ptr<Object> obj) // ?7

void f(const Object* obj) // object is immutable
void f(Object* const obj) // pointer 1s immutable
void f(const Object* const obj) // both are immutable

void f(Object const* obj) // what is immutable?

We can use shared pointers everywhere
But, we cannot stop thinking about...

Type Hints

1." | K
) @k_2052

1999: you can't write real software
without types

2009: types are the worst. We can codg
faster without them!

2019: types stop all the bugs!

2029: you don't need types when ML
can figure out the types for ypu

2039: developers are dead due to
climate change

18:56 - 2019-06-21 - Twitter for Android

2,199 Retweets 8,513 Likes

O o] Q J,

Do we realy want to
define types and structures before
understanding the problem
and the solution?

Lf‘-‘ -
% E

Constantly task switching between:
Coding and Type-defining

How many bits would
| like this integer to have?

Lf‘-‘ -
% E

What happens when you are wrong?

Lets just use Int,
and deal with it later.

Prototyping

Prototype is a model
built to test a concept,
and to be learned from

You write it once,
gaining experience in both
understanding the problem, and
understanding a solution

7 £2

You write It again,
with less things to worry about
and attention to finer details

Improved Readability
Improved Maintainability
Fewer Bugs

Prototyping Future Tasks

Some things you can do
only in Python

Use a dictionary
Define a function

Think in the language you write

*.,53 -
% E

Handle type checking, seperately

Along with many other reasons.

Python .
Prototyping RS Ofclailif:@l Future Tasks

An empirical comparison of ¢, c++, java, perl, python, ...

https://page.mi.fu-berlin.de/prechelt/Biblio/jccpprtTR.pdf

How much of the speedup do we get
from thinking faster?

My Experiment

|
+
|
+
|
+
|
+
|
+
|

I
I
+ —+ —+ + +
I [I]
1 O O O 1 I I
+ O+ 0+ + +
O O O 1 O 1 _
@) 1 O 1 I
o+—+ 0+ —+4+ — +
O 1 O O O 1
®) l o 1+ O O Ll
o + + —+ O + O + —
O 1 1O O O 1
O 1 l 1
o+ —+ +—+ +
O 1 I I 1
O 1 I I]
o+ +—+ + +
O 1 I
O 1 I
O+ —+—+ + —+
O 1 I I
O 1 I 1
o + + + — + +
@ _ _
0p) _ _

—+ —+ —+ — + —

+--+ + +
|
+
|
+
+
+

+
|

|
+
|
+
|
: +
|
+
| E |
e ST e T ST T e S LT oL IR I S gt &

e S e T o S Tl TSP Symp U i At &

|S
+ +--t--t--+--+

—+ —+ —+ — + —

y
tho
n

C
E:;r
Ayth
thO
oz

C
++

Work Time in Minutes

Work Time in Minutes Source Lines of Code

Excluding: comment, empty lines, bracelets

Work Time in Minutes Source Lines of Code

Excluding: comment, empty lines, bracelets

Both version have exactly the same

Algorithm
Data lypes
Funtions
Names

Both version have exactly the same

Algorithm
Data lypes
Funtions
Names

set<Point> calc path(map<Point, Point> prevs, Point point) {
set<Point> results;
point = prevs[point];
while (prevs.find(point) != prevs.end()) {
results.insert(point);
point = prevs|[point]; }
return results; }

auto points = calc path(prevs, end point);

def calc path(prevs, point):
point = prevs[point]
while point 1n prevs:
yield point
point = prevs[point]

points = set(calc path(prevs, end point))

Why?

What was | Thinking About?

Experiment,
it's fun

Work Time in Minutes Source Lines of Code

Excluding: comment, empty lines, bracelets

Summary

Immediate Feedback
Standard Representation & APl
Composability
Prototype in Python

Summary

Immedlate Feedback
Standard Representation & APl

Composability
Prototype in Python

Summary

Immediate Feedback

Standard Representation & AP
Composability
Prototype in Python

Summary

Immediate Feedback
Standard Representation & AP

Composability
Prototype in Python

Summary

Immediate Feedback
Standard Representation & AP
Composability

Prototype in Python

Think about the way you think
Think in Python
Experiment, it's fun!

Think about the way you think
Think in Python

Experiment, it's fun!

Think about the way you think
Think in Python

Experiment, it's fun!

Think about the way you think
Think in Python

Experiment, it's fun!

Think in Python

A@W ¥
Thank You

Twitter: @DudeJohnny1219

email: johnny.dude@gmail.com

bit.ly/ThinkPy

http://bit.ly/ThinkPy

Many thanks to those who made this talk possible,
without thier help this talk might not be worth listening to.

Nobuko Sano ({E£F1S), Elizabeth Firman,

Michael Hirsch, Aharon Broduch, Eran Galon, Kobi and Suzi Lidershnider,

Boris Liberman, Ariel Weinstein, Omer Anson, Eran Galon, Aviv Kuvent, Eddy
Duer, Meital Bar-Kana, Yaron Mor

References and Inspirations

Bret Victor gave an amazing talk ("Inventing on Principle") in which he mentioned immidiate reaction.

https://vimeo.com/36579366

| first learned about the magical number 7 from the famous post of Glyph about threading module complexities.

https://glyph.twistedmatrix.com/2014/02/unyielding.html

Alan Kay have many talks explaining science, human, machines, learning, teaching, and combining it all together.

| actually started reading "Thinking fast and slow" of Daniel Kahneman last month and decided to take a couple ofcouple of very good points from the first half
of this book.

One of the papers about task switching | happend to find. It talks about many interesting experiments on task switiching

https://www.apa.org/pubs/journals/releases/xhp274763.pdf
Rubinstein, J. S., Meyer, D. E. & Evans, J. E. (2001). Executive Control of Cognitive Processes in Task Switching. Journal of Experimental Psychology: Human
Perception and Performance, 27, 763-797.

The empirical research | like, it shows a lot of measurements comparing programing languages, it is old, but | believe nothing major changed since then. There
are other reseach that shows similar results in different domains, and with different methods. (like analyzing github repositories.)

https://page.mi.fu-berlin.de/prechelt/Biblio/jccpprtTR.pdf
Prechelt, Lutz. (2000). An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a search/string-processing program.

https://vimeo.com/36579366
https://glyph.twistedmatrix.com/2014/02/unyielding.html
https://www.apa.org/pubs/journals/releases/xhp274763.pdf
https://page.mi.fu-berlin.de/prechelt/Biblio/jccpprtTR.pdf

