Dissecting tf.function to discover AutoGraph strengths and subtleties

How to correctly write graph-convertible functions in TensorFlow 2.0.
About me

Computer engineer | Head of ML & CV @ ZURU Tech Italy | Machine Learning GDE

- Blog: https://pgaleone.eu/
- Github: https://github.com/galeone/
- Twitter: @paolo_galeone
TensorFlow 2.0 & DataFlow Graphs

- Execution Speed
- Language Agnostic Representation
- Easy to replicate and distribute
- Automatic Differentiation
tf.function and AutoGraph

AutoGraph converts Python control flow statements into appropriate TensorFlow graph ops.
tf.function and AutoGraph
The problem

Given the **constant** matrices

\[A = \begin{pmatrix} 10 & 10 \\ 11 & 1 \end{pmatrix}, \quad x = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

And the scalar **variable** \(b \in \mathbb{R} \)

Compute \(Ax + b \)
TensorFlow 1.x solution

g = tf.Graph()
with g.as_default():
 a = tf.constant([[10,10],[11,1.]])
 x = tf.constant([[1.0],[0.,1.]])
 b = tf.Variable(12.)
 y = tf.matmul(a, x) + b
 init_op = tf.global_variables_initializer()

with tf.Session() as sess:
 sess.run(init_op)
 print(sess.run(y))
TensorFlow 2.0 solution: eager execution

def f():
 a = tf.constant([[10,10],[11,11]])
 x = tf.constant([[1,0],[0,1]])
 b = tf.Variable(12.)
 y = tf.matmul(a, x) + b
 return y
print([f().numpy() for _ in range(10)])

Every tf.* op, produces a tf.Tensor object
From eager function to tf.function

```python
@tf.function
def f():
    a = tf.constant([[10,10],[11,1.]]):
    x = tf.constant([[1.,0.],[0.,1.]]):
    b = tf.Variable(12.):
    y = tf.matmul(a, x) + b:
    print("PRINT: ", y):
    tf.print("TF-PRINT: ", y):
    return y:

f()
```
From eager function to tf.function

PRINT: Tensor("add:0", shape=(2, 2), dtype=float32)
From eager function to tf.function

ValueError: tf.function-decorated function tried to create variables on non-first call.
Lesson #1: functions that create a state

A `tf.Variable` object in eager mode is just a Python object that gets destroyed as soon as it goes out of scope.

A `tf.Variable` object in a `tf.function`-decorated function is the definition of a node in a persistent graph (eager execution disabled).
The solution

class F():
 def __init__(self):
 self._b = None

@tf.function
def __call__(self):
 a = tf.constant([[10, 10], [11., 1.]])
 x = tf.constant([[1., 0.], [0., 1.]])
 if self._b is None:
 self._b = tf.Variable(12.)
 y = tf.matmul(a, x) + self._b
 print("PRINT: ", y)
 tf.print("TF-PRINT: ", y)
 return y

f = F()
f()
Lesson #2: eager function is not graph-convertible as is

There is no 1:1 match between eager execution and the graph built by @tf.function.

Define the function thinking about the graph that is being built.
Change the input type

- Python is a dynamically-typed language
- TensorFlow is a strictly statically typed framework
The function

```python
@tf.function
def f(x):
    print("Python execution: ", x)
    tf.print("Graph execution: ", x)
    return x
```

The function parameters type is used to create a graph, that is a statically typed object, and to assign it an ID.
tf.Tensor as input

```python
print("##### float32 test #####")
a = tf.constant(1, dtype=tf.float32)
print("first call")
f(a)
a = tf.constant(1.1, dtype=tf.float32)
print("second call")
f(a)

print("##### uint8 test #####")
b = tf.constant(2, dtype=tf.uint8)
print("first call")
f(b)
b = tf.constant(3, dtype=tf.uint8)
print("second call")
f(b)
```
tf.Tensor as input

```
##### float32 test #####
first call
Python execution: Tensor("x:0", shape=(), dtype=float32)
Graph execution: 1
second call
Graph execution: 1.1

##### uint8 test #####
first call
Python execution: Tensor("x:0", shape=(), dtype=uint8)
Graph execution: 2
second call
Graph execution: 3
```

Everything goes as we expect
Inspecting the function

def tf__f(x):
 try:
 with ag__.function_scope('f'):
 do_return = False
 retval_ = None
 with ag__.utils.control_dependency_on_returns(ag__.converted_call(print, None, ag__.ConversionOptions(re):
 tf_1, x_1 = ag__.utils.alias_tensors(tf, x)
 with ag__.utils.control_dependency_on_returns(ag__.converted_call('print', tf_1, ag__.ConversionOptions(re):
 x_2 = ag__.utils.alias_tensors(x_1)
 do_return = True
 retval_ = x_1
 return retval_
 except:
 ag__.rewrite_graph_construction_error(ag_source_map__)
Inspecting the function

```python
with ag__.utils.control_dependency_on_returns(
    ag__.converted_call(
        print, None, ag__.ConversionOptions(
            recursive=True,
            force_conversion=False,
            optional_features=ag__.Feature.ALL,
            internal_convert_user_code=True),
        ('Python execution: ', x), {})
):

converted_call owner parameter is None: this line becomes a tf.no_op()
```
Python native type as input

def printinfo(x):
 print("Type: ", type(x), " value: ", x)

print("##### int test #####")
print("first call")
a = 1
printinfo(a)
f(a)
print("second call")
b = 2
printinfo(b)
f(b)

print("##### float test #####")
print("first call")
a = 1.0
printinfo(a)
f(a)
print("second call")
b = 2.0
printinfo(b)
f(b)
Python native type as input

Call with Python int

```python
##### int test #####
first call
Type: <class 'int'>  value: 1
Python execution: 1
Graph execution: 1

second call
Type: <class 'int'>  value: 2
Python execution: 2
Graph execution: 2
```

The graph is being recreated at every function invocation
Python native type as input

Call with Python float

```
##### float test #####
first call
Type: <class 'float'>  value: 1.0
Graph execution: 1
second call
Type: <class 'float'>  value: 2.0
Graph execution: 2
```

- The return type is **WRONG**.
- The graphs built for the integers 1 and 2 is reused for the float 1.0 and 2.0
Lesson #3: no autoboxing

tf.function does not automatically convert a Python integer to a tf.Tensor with dtype tf.int64, and so on.
The graph ID, when the input is not a tf.Tensor object, is built using the variable value.

That's why we used the same graph built for f(1) for f(1.0), because 1 == 1.0.
No autoboxing: performance measurement

```python
@tf.function
def g(x):
    return x

start = time.time()
for i in tf.range(1000):
    g(i)
print("tf.Tensor time elapsed: ", (time.time()-start))

start = time.time()
for i in range(1000):
    g(i)
print("Native type time elapsed: ", (time.time()-start))
```

tf.Tensor time elapsed: 0.41594886779785156
Native type time elapsed: 5.189513444900513
Lesson #4: tf.Tensor everywhere

Use tf.Tensor everywhere.
Python Operators

```python
@tf.function
def if_elif(a, b):
    if a > b:
        tf.print("a > b", a, b)
    elif a == b:
        tf.print("a == b", a, b)
    elif a < b:
        tf.print("a < b", a, b)
    else:
        tf.print("wat")
x = tf.constant(1)
if_elif(x, x)
```
Python operators

wat

WAT?????????
Problems

- Python `__eq__` is not converted to `tf.equal` (even in eager mode!) but checks for the Python variable identity.
- AutoGraph converts the `if`, `elif`, `else` statements but
- AutoGraph does not converts the Python built-in operators (`__eq__`, `__lt__`, `__gt__`)
Python operators

```python
@tf.function
def if_elif(a, b):
    if tf.math.greater(a, b):
        tf.print("a > b", a, b)
    elif tf.math.equal(a, b):
        tf.print("a == b", a, b)
    elif tf.math.less(a, b):
        tf.print("a < b", a, b)
    else:
        tf.print("wat")
```
Lesson 5: operators

Use the TensorFlow operators explicitly everywhere.
Recap

1. `tf.Variable` need a special treatment.
2. Think about the graph while designing the function: eager to graph is not straightforward.
3. There is no autoboxing of Python native types, therefore
4. Use `tf.Tensor` everywhere.
5. Use the TensorFlow operators explicitly everywhere.
Hands-On Neural Networks with TensorFlow 2.0

Understanding the TensorFlow architecture, from static graph to eager execution, designing Deep Neural Networks.

Stay updated: https://pgaleone.eu/subscribe
The End

Thank you 😊

- Blog: https://pgaleone.eu/
- Twitter: https://twitter.com/paolo_galeone
- GitHub: https://github.com/galeone (the slides of this talk are here!)