

From days to minutes, fromFrom days to minutes, from
minutes to milliseconds withminutes to milliseconds with

SQLAlchemySQLAlchemy
Leonardo Rochael Almeida

10-July-2019

Hi, I’m Leo. I’m a Tech Lead at Geru.

I’m here today to talk to you about ORMs and performance.

I’m by no means an expert in either SQL, SQLAlchemy or ORMs.

But I’d like to pass on lessons learned while optimizing some processes in my company.

Speaker notes

GeruGeru
Brazillian FintechBrazillian Fintech

Backend Stack:

Others (Celery, MongoDB, Java, …)

Our backend stack is almost all Python, with storage mostly in PostgreSQL through SQLAlchemy.

Speaker notes

SQLAlchemySQLAlchemy
Two aspects:

SQL Expression Language (a Python DSL)

X

Object Rela�onal Mapper (ORM)

SQLAlchemy has two aspects:

The SQL Expression Langage, which is a way of mapping SQL constructs into a Pythonic Domain Specific
Language (DSL)
The Object Relational Mapper, which allows mapping Python classes to tables and records of those tables to
instances of the respective classes.

The ORM is built upon the DSL, but they can be used without one another.

At Geru we use the ORM almost exclusively.

TODO: Add slides showing code examples contrasting DSL/ORM

Speaker notes

SQLAlchemy is Awesome!SQLAlchemy is Awesome!
However:

Frameworks s�ll require you to make
decisions about how to use them, and

knowing the underlying pa�erns is
essen�al if you are to make wise choices.

- Mar�n Fowler

h�ps://mar�nfowler.com/books/eaa.html

The ORM TrapThe ORM Trap

The ORM TrapThe ORM Trap
Sensible Python code ➡ Bad SQL access pa�erns

The ORM TrapThe ORM Trap
Sensible Python code ➡ Bad SQL access pa�erns
Unno�ceable at low data volumes

The ORM TrapThe ORM Trap
Sensible Python code ➡ Bad SQL access pa�erns
Unno�ceable at low data volumes
Like… during development…

The ORM TrapThe ORM Trap
Sensible Python code ➡ Bad SQL access pa�erns
Unno�ceable at low data volumes
Like… during development…
And early produc�on…

Using a good ORM feels great. Most of the time you forget it’s even there!

And that is actually the problem, because the DB is an external system with an API and should be treated as such.

The API just happens to be SQL…

Speaker notes

The Fix: Let the DB do its JobThe Fix: Let the DB do its Job

The Fix: Let the DB do its JobThe Fix: Let the DB do its Job
Be aware of implicit queries.

The Fix: Let the DB do its JobThe Fix: Let the DB do its Job
Be aware of implicit queries.

Specially from rela�onships.

The Fix: Let the DB do its JobThe Fix: Let the DB do its Job
Be aware of implicit queries.

Specially from rela�onships.

Aim for O(1) queries per request/job/ac�vity.

The Fix: Let the DB do its JobThe Fix: Let the DB do its Job
Be aware of implicit queries.

Specially from rela�onships.

Aim for O(1) queries per request/job/ac�vity.

Avoid looping through model instances

The Fix: Let the DB do its JobThe Fix: Let the DB do its Job
Be aware of implicit queries.

Specially from rela�onships.

Aim for O(1) queries per request/job/ac�vity.

Avoid looping through model instances

Let the DB do it for you

Be mindful of the work that the database is doing
Specially the amount of DB round-trips
But also the amount of data traffic (row count)

Speaker notes

Geru Case 1: The 24+ hourGeru Case 1: The 24+ hour
reportsreports

Now it takes minutes

Geru Funding ModelGeru Funding Model

Geru is a Fintech that lends money at rates much lower than the mainstream banks in Brazil. We work online exclusively.

During each month, borrowers pay their monthly instalments, and at the beginning of every month Geru pays back the
Debenture Holders.

This is very simplified of course, there are lots of details on top of that:

Debentures bought later “cost” more but are “worth” the same

Debenture remuneration is complicated by tax details like

Amortization paid back doesn’t pay taxes but the premium on top does pay
Amount of time invested reduce taxes

Different series have different payback rules

Speaker notes

Entities and RelationshipsEntities and Relationships

ORM DeclarationORM Declaration
DBSession = scoped_session(sessionmaker(...))

class ORMClass(object):
"""Base class for all models"""
@classproperty
def query(cls):

"""
 Convenient query for records of a model, like:

 query = MyModel.query.filter(...).order_by(...)
 """

return DBSession.query(cls)

Base = declarative_base(cls=ORMClass)

Model DeclarationModel Declaration
class Debenture(Base):

id = Column(Integer, primary_key=True)
 series_number = Column(Integer, nullable=False)

 sale_price = Column(Numeric, nullable=True)

 sale_date = Column(Date, nullable=True)

cont ...

Model DeclarationModel Declaration
class Debenture(Base):

cont ...
 holder_id = Column(
 Integer, ForeignKey('debenture_holder.id'),
 nullable=True, index=True,
)
 holder = relationship(

'DebentureHolder', backref=backref(
'debentures', lazy='dynamic',

),
 foreign_keys=[holder_id],
)

cont ...

Model DeclarationModel Declaration
class Debenture(Base):

cont ...
 series_id = Column(
 Integer, ForeignKey('debenture_series.id'),
 nullable=False, index=True,
)

 series = relationship(
'DebentureSeries', backref=backref(

'debentures', lazy='dynamic',
),
 foreign_keys=[series_id],
)

First things �rst: loggingFirst things �rst: logging
development.ini
[loggers]
keys = sqlalchemy

[logger_sqlalchemy]
qualname = sqlalchemy.engine
level = INFO
"level = INFO" logs SQL queries.
"level = DEBUG" logs SQL queries and results.
"level = WARN" logs neither (in production).

So I had to debug an issue in the distribution code, but it was taking way too long at each run.

So the first thing I did was to enable sqlalchemy statement logging in my development instance, and what I saw was
gobs of repeated statements, all alike, just rolling through the logs.

Speaker notes

Understanding the cacheUnderstanding the cache
optimizationoptimization

See diff and Jupyter

It’s perfectly reasonable in pure Python to sum() over an iteration of attribute accessess in generator comprehension.

But if the generator comprehension is looping over a query then a lot of data is being fetched from the database so that
in the end the Python programmer could calculate do what the database could reply with a single line of SQL.

Speaker notes

Understanding theUnderstanding the
insert/update optimizationinsert/update optimization

See diff and Jupyter

When the optimizationWhen the optimization
back�resback�res

See diff and Jupyter

Unfortunately at some point the complex query that allowed to fetch all information of each integralization started taking
hours.

It was a single query taking many hours to execute.

Fortunately it was easy to locate as it was a single query envelopped by logging calls.

The query was then broken into two parts, the second of which was executed in a loop for each integralization. Since the
amount of data transmitted was small, and only a single query per loop was added inside a loop that already contained
multiple other slower queries, it had no negative impact, and the outer query ran again at the same 2 minutes timeframe
as in the beginning.

Speaker notes

Geru Case 2: The 1+minuteGeru Case 2: The 1+minute
pagepage

Now renders in less than a second.

First things �rst: slowlogFirst things �rst: slowlog
[app:main]
pyramid.includes =
 pyramid_tm

[...]
 slowlog

Slowlog configuration:
slowlog = true
slowlog_file = logs/slow.log

A complete understanding of what slowlog does is out of scope for this talk (there is talk by me at PyConUS 2013 about
it on YouTube), but basically slowlog watches for wsgi requests that take too long and starts dumping periodic stack
traces of the thread handling the slow requests.

Makes it ease to see which point of the code is responsible for the performance issues.

Speaker notes

Understanding theUnderstanding the
authorization optimizationauthorization optimization

See diff

ConclusionsConclusions
Understand SQLUnderstand SQL

ConclusionsConclusions
Understand SQLUnderstand SQL

SELECT Documenta�on

ConclusionsConclusions
Understand SQLUnderstand SQL

SELECT Documenta�on
GROUP BY vs aggrega�on func�ons

ConclusionsConclusions
Understand SQLUnderstand SQL

SELECT Documenta�on
GROUP BY vs aggrega�on func�ons
aggrega�on func�on w/ filters

ConclusionsConclusions
Understand SQLUnderstand SQL

SELECT Documenta�on
GROUP BY vs aggrega�on func�ons
aggrega�on func�on w/ filters
DISTINCT ON

ConclusionsConclusions
Understand SQLUnderstand SQL

SELECT Documenta�on
GROUP BY vs aggrega�on func�ons
aggrega�on func�on w/ filters
DISTINCT ON
window expressions

Study SQL:

Read the SELECT documentation of your database. Understand how aggregation functions (sum(),
array_agg()) interfere with the cardinality (number of rows) of the result and how they interact with GROUP BY.

Understand DISTINCT and specially DISTINCT ON
Understand "window" expressions

sum(X) OVER (PARTITION BY ... ORDER BY)

Read about CTEs (WITH statement) and subqueries, and how/where you can use them.
Understand how to insert and update rows that match the result of other queries.

Speaker notes

ConclusionsConclusions
THEN Study SQLAlchemyTHEN Study SQLAlchemy

ConclusionsConclusions
THEN Study SQLAlchemyTHEN Study SQLAlchemy

Be aware of the underlying queries

ConclusionsConclusions
THEN Study SQLAlchemyTHEN Study SQLAlchemy

Be aware of the underlying queries

Push work to the DB

ConclusionsConclusions
THEN Study SQLAlchemyTHEN Study SQLAlchemy

Be aware of the underlying queries

Push work to the DB

As much as possible

ConclusionsConclusions
THEN Study SQLAlchemyTHEN Study SQLAlchemy

Be aware of the underlying queries

Push work to the DB

As much as possible

But not too much

THEN Study SQLAlchemy

Learn how to produce in SQLAlchemy the same optimized access patterns you know are possible in
SQL

Be aware of the underlying queries

All attribute accesses could represent a roundtrip. Atomic values usually don’t (though they can if you
ask SQLAlchemy to defer loading columns). But all relatioship attributes do, unless they’re not dynamic
and have been previously accessed in the same session.

Speaker notes

The EndThe End
Thank you!

LeoRochael@geru.com.br
LeoRochael@gmail.com
@LeoRochael

