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Couldn’t you have more buzz words in your talk 
title?



Previous workflow and its limitations
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Why Kubernetes?



       ur own bare-metal Kubernetes cluster
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A bare-metal Kubernetes cluster?

- Package it to deeply know what’s it’s made of and how it works

- Automate installation, configuration, provisioning… everything!



Developer-driven



OpenID authentication

● Developer goes to internal kubeconfig URL

● Login using usual Google Suite account (openID) + free MFA (Yubikey)

● Download Kubeconfig

● Welcome to Kubernetes!



Gitlab based authorization

- Gitlab based RBAC + Pod Security Policy since day 1
- 1 namespace = 1 team

- Open sourced gitlab2rbac: https://github.com/numberly/gitlab2rbac



Cluster capabilities and choices

- Gitlab registry for our Docker containers
- Ensure only whitelisted images can be deployed

- runAsNonRoot + strict Network Policies enforced

- Ingress using nginx-ingress with fully automated LetsEncrypt certificate lifecycle

- Multi-tenant cluster supporting all environments (production, staging, development)

- Special “sandbox” namespace to test things:

- No distributed persistent storage yet

-



A workflow-oriented documentation



Foster and scale Kubernetes adoption

We created an internal Kubernetes Certification

● To make sure that in every team someone can help with Kubernetes
● To help everyone identify who can support them when they need a Kubernetes expert
● To value the expertise of members of our teams
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T      ke Away

● Gitlab for RBAC and image registry + Kubernetes = gitlab2rbac

● Balance security vs freedom: not opposed all the time!

● Enforce security and QA rules from the start
○ TODO: work on admission controller to enforce whitelisted images only

● Ops concentrate on features that are immediately available to all devs
○ TODO: automate F5 ingress SSL setup for public services

● Practical and useful docs are key

● Spread expertise to foster and scale adoption
○ TODO: create more certification levels



Our Kubernetized workflow



Code repositories
Configuration repositories
Continuous Integration
Code reviews
Users roles = k8s RBAC
Groups = k8s namespaces
Docker image registry

YAML kubernetes 
deployment

SSL offloading

ingress-

Moved to k8s secrets

Needs Dockerfile



Let’s build a GraphQL app on Kubernetes!



Demo app: Trello REST API to GraphQL
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Tartiflette main features

● Python 3.6+

● Schema First (SDL)

● Built on AsyncIO

● aiohttp integration

● Embedded GraphiQL development web interface

● Tastes even better than it smells (AKA developer friendly)



Schema Definition Language



1 GraphQL request = x REST requests

These edges will resolve in multiple REST API calls
1 GraphQL call = multiple REST calls



'idBoards': ['5d1f33e746ea0a8020560465', '5d1f341e82d5a37d0efb97b1']

1x

2x

resolved edge with full objects



Show me some code: aiohttp app definition

Generic SDL

Resolver functions



Show me some code: GraphQL resolvers

Edge resolver

Root query resolver



#shipit



Dockerfile: multi-stage build

Slim python3.7 run image

Full python3.7 build image



Build + Image tag = git branch + Upload to Gitlab registry

Git branch workflow
● development
● staging
● master + git tag = production



To Kubernetes!

Security

Automated
Let’s Encrypt SSL



Quick demo
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T      ke Away

● GraphQL removes friction by normalizing how data is addressed between teams

● Schema Definition Language lets you concentrate on the data, not the code

● Tartiflette is a modern, fast and efficient way of doing Python + GraphQL

● Workflow for environment deployment based on git branches
○ TODO: challenge environment multi-tenancy of the cluster later

● Kubernetes secrets + environment variables to store and access secrets
○ TODO: generalize vault

● Kubectl is powerful: give that power to developers!
○ TODO: allow some abstraction tools when adoption is higher if needed



Thanks!

https://github.com/ultrabug/ep2019

@ultrabug


