

How we run GraphQL APIs in production on
our (own) Kubernetes cluster

@

@ultrabug

Gentoo Linux developer
PSF contributing member
CTO at Numberly

Couldn’t you have more buzz words in your talk
title?

Previous workflow and its limitations

Code repositories
Configuration repositories
Continuous Integration
Code reviews

Code repositories
Configuration repositories
Continuous Integration
Code reviews

YAML configuration file

Code repositories
Configuration repositories
Continuous Integration
Code reviews

YAML configuration file

Code repositories
Configuration repositories
Continuous Integration
Code reviews

YAML configuration file

Code repositories
Configuration repositories
Continuous Integration
Code reviews

YAML configuration file

ansible

Code repositories
Configuration repositories
Continuous Integration
Code reviews

YAML configuration file

ansible

SSL offloading

Code repositories
Configuration repositories
Continuous Integration
Code reviews

YAML configuration file

ansible

SSL offloading

Why Kubernetes?

 ur own bare-metal Kubernetes cluster

54321 3 4 5

Methodology

Build
 a b

are
 cl

ust
er

Decid
e o

n th
e to

olin
g

W
rit

e d
ocu

m
enta

tio
n

Fost
er a

nd su
pport

 adoptio
n

Dist
rib

ute
 expert

ise

A bare-metal Kubernetes cluster?

- Package it to deeply know what’s it’s made of and how it works

- Automate installation, configuration, provisioning… everything!

Developer-driven

OpenID authentication

● Developer goes to internal kubeconfig URL

● Login using usual Google Suite account (openID) + free MFA (Yubikey)

● Download Kubeconfig

● Welcome to Kubernetes!

Gitlab based authorization

- Gitlab based RBAC + Pod Security Policy since day 1
- 1 namespace = 1 team

- Open sourced gitlab2rbac: https://github.com/numberly/gitlab2rbac

Cluster capabilities and choices

- Gitlab registry for our Docker containers
- Ensure only whitelisted images can be deployed

- runAsNonRoot + strict Network Policies enforced

- Ingress using nginx-ingress with fully automated LetsEncrypt certificate lifecycle

- Multi-tenant cluster supporting all environments (production, staging, development)

- Special “sandbox” namespace to test things:

- No distributed persistent storage yet

-

A workflow-oriented documentation

Foster and scale Kubernetes adoption

We created an internal Kubernetes Certification

● To make sure that in every team someone can help with Kubernetes
● To help everyone identify who can support them when they need a Kubernetes expert
● To value the expertise of members of our teams

T ke Away

T ke Away

● Gitlab for RBAC and image registry + Kubernetes = gitlab2rbac

● Balance security vs freedom: not opposed all the time!

● Enforce security and QA rules from the start
○ TODO: work on admission controller to enforce whitelisted images only

● Ops concentrate on features that are immediately available to all devs
○ TODO: automate F5 ingress SSL setup for public services

● Practical and useful docs are key

● Spread expertise to foster and scale adoption
○ TODO: create more certification levels

Our Kubernetized workflow

Code repositories
Configuration repositories
Continuous Integration
Code reviews
Users roles = k8s RBAC
Groups = k8s namespaces
Docker image registry

YAML kubernetes
deployment

SSL offloading

ingress-

Moved to k8s secrets

Needs Dockerfile

Let’s build a GraphQL app on Kubernetes!

Demo app: Trello REST API to GraphQL

GraphQL

REST

Demo app: Trello REST API to GraphQL

GraphQL

REST

+ = ?

Demo app: Trello REST API to GraphQL

GraphQL

REST

+

Tartiflette main features

● Python 3.6+

● Schema First (SDL)

● Built on AsyncIO

● aiohttp integration

● Embedded GraphiQL development web interface

● Tastes even better than it smells (AKA developer friendly)

Schema Definition Language

1 GraphQL request = x REST requests

These edges will resolve in multiple REST API calls
1 GraphQL call = multiple REST calls

'idBoards': ['5d1f33e746ea0a8020560465', '5d1f341e82d5a37d0efb97b1']

1x

2x

resolved edge with full objects

Show me some code: aiohttp app definition

Generic SDL

Resolver functions

Show me some code: GraphQL resolvers

Edge resolver

Root query resolver

#shipit

Dockerfile: multi-stage build

Slim python3.7 run image

Full python3.7 build image

Build + Image tag = git branch + Upload to Gitlab registry

Git branch workflow
● development
● staging
● master + git tag = production

To Kubernetes!

Security

Automated
Let’s Encrypt SSL

Quick demo

T ke Away

T ke Away

● GraphQL removes friction by normalizing how data is addressed between teams

● Schema Definition Language lets you concentrate on the data, not the code

● Tartiflette is a modern, fast and efficient way of doing Python + GraphQL

● Workflow for environment deployment based on git branches
○ TODO: challenge environment multi-tenancy of the cluster later

● Kubernetes secrets + environment variables to store and access secrets
○ TODO: generalize vault

● Kubectl is powerful: give that power to developers!
○ TODO: allow some abstraction tools when adoption is higher if needed

Thanks!

https://github.com/ultrabug/ep2019

@ultrabug

